【BZOJ1558】等差数列(线段树)
【BZOJ1558】等差数列(线段树)
题面
题解
可以说这道题已经非常毒瘤了
怎么考虑询问操作?
如果直接将一段数分解为等差数列?
太麻烦了。。。。
考虑相邻的数做差,
这样等差数列变为了一段连续的相等区间
考虑怎么维护分解一段区间为最少数量的等差数列
事实上,等差数列的第一项不一定要和后面的相等,所以合并的时候要额外考虑
所以,设\(s[0/1/2/3]\)分别表示左右端点是否计算入内
同时维护最左端和最右端的值\(l,r\)
如果没有计算入内,则此时左右端点作为一个等差数列的开头
如果计算入内,则是一样的计算,考虑连续区间
合并的代码如下:
struct Data{int s[4],l,r;};
Data operator+(Data x,Data y)
{
Data c;c.l=x.l,c.r=y.r;
c.s[0]=x.s[2]+y.s[1]-(x.r==y.l);
c.s[0]=min(c.s[0],x.s[0]+y.s[1]);
c.s[0]=min(c.s[0],x.s[2]+y.s[0]);
c.s[1]=x.s[3]+y.s[1]-(x.r==y.l);
c.s[1]=min(c.s[1],x.s[1]+y.s[1]);
c.s[1]=min(c.s[1],x.s[3]+y.s[0]);
c.s[2]=x.s[2]+y.s[3]-(x.r==y.l);
c.s[2]=min(c.s[2],x.s[2]+y.s[2]);
c.s[2]=min(c.s[2],x.s[0]+y.s[3]);
c.s[3]=x.s[3]+y.s[3]-(x.r==y.l);
c.s[3]=min(c.s[3],x.s[3]+y.s[2]);
c.s[3]=min(c.s[3],x.s[1]+y.s[3]);
return c;
}
以\(s[0]\)举例,\(s[0]\)表示的是左右端点都不选
转移如下:
1.可以直接合并左边选右端点,右边选左端点。如果两者的差值相同,则可以将原来的等差数列合并为一个
2.左边两侧都不选,左边的右端点作为一个等差数列的首项,右边就要选择左端点
3.左边选右端点,右边的左端点作为一个等差数列的首项,所以右端点两边都不选
其他的\(s[1/2/3]\)转移同理
至于区间的加法,不过是对查分数组造成两个单点修改,以及一个区间修改的影响
仔细考虑清楚就可以
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define lson (now<<1)
#define rson (now<<1|1)
#define MAX 120000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int V[MAX],n;
struct Data{int s[4],l,r;};
Data operator+(Data x,Data y)
{
Data c;c.l=x.l,c.r=y.r;
c.s[0]=x.s[2]+y.s[1]-(x.r==y.l);
c.s[0]=min(c.s[0],x.s[0]+y.s[1]);
c.s[0]=min(c.s[0],x.s[2]+y.s[0]);
c.s[1]=x.s[3]+y.s[1]-(x.r==y.l);
c.s[1]=min(c.s[1],x.s[1]+y.s[1]);
c.s[1]=min(c.s[1],x.s[3]+y.s[0]);
c.s[2]=x.s[2]+y.s[3]-(x.r==y.l);
c.s[2]=min(c.s[2],x.s[2]+y.s[2]);
c.s[2]=min(c.s[2],x.s[0]+y.s[3]);
c.s[3]=x.s[3]+y.s[3]-(x.r==y.l);
c.s[3]=min(c.s[3],x.s[3]+y.s[2]);
c.s[3]=min(c.s[3],x.s[1]+y.s[3]);
return c;
}
struct Node
{
int l,r,v;
Data x;
}t[MAX<<2];
void pushdown(int now)
{
t[lson].v+=t[now].v;t[rson].v+=t[now].v;
t[lson].x.l+=t[now].v;t[lson].x.r+=t[now].v;
t[rson].x.l+=t[now].v;t[rson].x.r+=t[now].v;
t[now].v=0;
}
void Build(int now,int l,int r)
{
t[now].l=l;t[now].r=r;
if(l==r)
{
t[now].x.s[0]=0;
t[now].x.s[1]=t[now].x.s[2]=t[now].x.s[3]=1;
t[now].x.l=t[now].x.r=V[l];
return;
}
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
t[now].x=t[lson].x+t[rson].x;
}
Data Query(int now,int l,int r)
{
if(t[now].l==l&&t[now].r==r)return t[now].x;
pushdown(now);
int mid=(t[now].l+t[now].r)>>1;
if(r<=mid)return Query(lson,l,r);
if(l>mid)return Query(rson,l,r);
return Query(lson,l,mid)+Query(rson,mid+1,r);
}
void Modify(int now,int l,int r,int w)
{
if(t[now].l==l&&t[now].r==r)
{
t[now].v+=w;
t[now].x.l+=w;t[now].x.r+=w;
return;
}
pushdown(now);
int mid=(t[now].l+t[now].r)>>1;
if(r<=mid)Modify(lson,l,r,w);
else if(l>mid)Modify(rson,l,r,w);
else Modify(lson,l,mid,w),Modify(rson,mid+1,r,w);
t[now].x=t[lson].x+t[rson].x;
}
int main()
{
n=read();
for(int i=1;i<=n;++i)V[i]=read();
for(int i=1;i<n;++i)V[i]=V[i+1]-V[i];
Build(1,1,n-1);
int Q=read();
char opt[20];
while(Q--)
{
scanf("%s",opt);
int l=read(),r=read();
if(opt[0]=='B')(l==r)?puts("1"):printf("%d\n",Query(1,l,r-1).s[3]);
else
{
int a=read(),b=read();
if(l!=1)Modify(1,l-1,l-1,a);
if(l!=r)Modify(1,l,r-1,b);
if(r!=n)Modify(1,r,r,-(a+(r-l)*b));
}
}
return 0;
}
【BZOJ1558】等差数列(线段树)的更多相关文章
- BZOJ.1558.[JSOI2009]等差数列(线段树 差分)
BZOJ 洛谷 首先可以把原序列\(A_i\)转化成差分序列\(B_i\)去做. 这样对于区间加一个等差数列\((l,r,a_0,d)\),就可以转化为\(B_{l-1}\)+=\(a_0\),\(B ...
- [BZOJ4373]算术天才⑨与等差数列(线段树)
[l,r]中所有数排序后能构成公差为k的等差数列,当且仅当: 1.区间中最大数-最小数=k*(r-l) 2.k能整除区间中任意两个相邻数之差,即k | gcd(a[l+1]-a[l],a[l+2]-a ...
- 【BZOJ4373】算术天才⑨与等差数列 [线段树]
算术天才⑨与等差数列 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 算术天才⑨非常喜欢和等 ...
- BZOJ 4373 算术天才⑨与等差数列 线段树+set(恶心死我了)
mdzz,这道题重构了4遍,花了一个晚上... 满足等差数列的条件: 1. 假设min是区间最小值,max是区间最大值,那么 max-min+k(r−l) 2. 区间相邻两个数之差的绝对值的gcd=k ...
- 【BZOJ4373】算术天才⑨与等差数列 线段树+set
[BZOJ4373]算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍.有一天,他给了你一个长度为n的序列,其中第i个数为a[i].他想考考你,每次他会给出询问l,r,k, ...
- BZOJ 4373算术天才⑨与等差数列(线段树)
题意:给你一个长度为n的序列,有m个操作,写一个程序支持以下两个操作: 1. 修改一个值 2. 给出三个数l,r,k, 询问:如果把区间[l,r]的数从小到大排序,能否形成公差为k的等差数列. n,m ...
- bzoj 4373 算术天才⑨与等差数列——线段树+set
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 能形成公差为k的等差数列的条件:mx-mn=k*(r-l) && 差分 ...
- bzoj4373 算术天才⑨与等差数列——线段树+set
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 一个区间有以 k 为公差的数列,有3个条件: 1.区间 mx - mn = (r-l) ...
- BZOJ 4373: 算术天才⑨与等差数列 线段树
Description 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能 ...
- BZOJ4373: 算术天才⑨与等差数列(线段树 hash?)
题意 题目链接 Sol 正经做法不会,听lxl讲了一种很神奇的方法 我们考虑如果满足条件,那么需要具备什么条件 设mx为询问区间最大值,mn为询问区间最小值 mx - mn = (r - l) * k ...
随机推荐
- P1438 无聊的数列
P1438 无聊的数列 链接 分析: 等差数列可加,首项相加,公差相加. 代码: #include<cstdio> #include<algorithm> #include&l ...
- 【下一代核心技术DevOps】:(六)Rancher集中存储及相关应用
1. 前言 为什么要使用集中存储? 使用集中存储有个很大的优势是数据安全和统一管理,和集群完美配合. 产品集成存储经历过几个阶段: 1.单机本机存储. 系统使用本地硬盘存储 2.单网络集中存储. 局域 ...
- Mvc_model实体数据验证
MVC提供了很方便的数据验证,只需要在model里加入相关的正则等,那么就会在前台里生成相关的验证脚本.需要引用两个js文件: jquery.validate.min.js jquery.valida ...
- [T-ARA][떠나지마][不要离开]
歌词来源:http://music.163.com/#/song?id=22704408 잊기엔 너무 사랑했나봐 [id-ggi-en neo-mu sa-lang-haen-na-bwa] 아직도 ...
- 《Linux内核设计与实现》 第三章学习笔记
一.进程 1.进程就是处于执行期的程序(目标码存放在某种存储介质上).但进程并不仅仅局限于一段可执行程序代码,通常进程还要包含其他资源.执行线程,简称线程(thread),是在进程中活动的对象. 2. ...
- Beta之后的想法
软件工程如果没选实践,单纯在理论课上面对教条化的理论,这些理论都是很有指导意义的,但没有实践课带来的切实的多人团队合作开发项目的实际体会,很难能领会到其中的深意.知行合一,才能发现软件工程里的知识都是 ...
- SQL中常用函数
SELECT CONVERT(varchar(100), GETDATE(), 23) AS 日期 结果:2017-01-05 select ISNULL(price,'0.0') ...
- SQL Server 2016以上版本大小写敏感的解决办法
alter database IovData set Single_user alter database IovData COLLATE Chinese_PRC_CI_AS alter databa ...
- Oracle 数据库启动过程
一 启动数据库 Oracle启动过程涉及几种模式,这些模式涉及不同的文件,每个状态下数据库做不同的事情,同时这些模式适用于不同的维护需求,主要的模式有三种:NOMOUNT.MOUNT.OPEN. 1 ...
- [书摘]HTTPS--From图解HTTP
1. HTTP存在的安全性风险: 1) 通信过程使用明文,容易被窃听 2) 不验证通信方的身份,可能遭遇伪装 3) 不验证通信数据包的完整性,可能遭遇篡改 2. HTTP+加密+认证+完整性保护=H ...