CF724F Uniformly Branched Trees

有根树可以统计。无根树难以统计。因为可以换根。

所以不让换根:只要两个无根树在重心位置不同构,就一定不同构

每个本质不同的树在重心位置统计上。

f[i][j][k]i个点根节点度数j,最大子树不超过k。枚举k大小的子树个数转移。

重心两个?

特殊考虑。两端f[n/2][d-1][n/2-1]=x,x*(x-1)/2+x

边界考虑到。

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=;
int mod,n,d;
int f[N][][N];
int jie[],inv[];
int qm(int x,int y){
int ret=;while(y){
if(y&) ret=(ll)ret*x%mod;x=(ll)x*x%mod;y>>=;
}return ret;
}
int dp(int i,int j,int k){
//cout<<" dp "<<i<<" "<<j<<" "<<k<<endl;
if(f[i][j][k]!=-) return f[i][j][k];
if(i==) {
if(j==d-||!j) return f[i][j][k]=;
return f[i][j][k]=;
}
if(i==){
if(k==&&j==) return f[i][j][k]=;
else return f[i][j][k]=;
}
if(j>i-) return f[i][j][k]=;
if(i>&&k==) return f[i][j][k]=; int C=;
int ret=;
int tmp=dp(k,d-,k-);
// cout<<" tmp "<<tmp<<" i j k "<<i<<" "<<j<<" "<<k<<endl;
for(reg m=;m<=j&&m*k<=i-;++m){
ret=(ret+(ll)dp(i-m*k,j-m,k-)*C%mod*inv[m]%mod)%mod;
C=(ll)C*(tmp-+m+)%mod;
}
//cout<<" ret "<<ret<<endl;
return f[i][j][k]=ret;
}
int main(){
rd(n);rd(d);rd(mod);
if(n<=){
puts("");return ;
}
memset(f,-,sizeof f);
jie[]=;
for(reg i=;i<=;++i) jie[i]=(ll)jie[i-]*i%mod;
inv[]=qm(jie[],mod-);
for(reg i=;i>=;--i) inv[i]=(ll)inv[i+]*(i+)%mod;
ll ans=;
ans=(ans+dp(n,d,(n-)/));
// cout<<"ans1 ------"<<ans<<endl;
if(n%==){
ll tmp=;
tmp=dp(n/,d-,n/-);
ans=(ans+(tmp*(tmp+)/%mod))%mod;
}
printf("%I64d",ans);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/3/3 18:21:10
*/

在某个位置为代表统计所有情况,

既可以不重不漏,还可以有的放矢

CF724F Uniformly Branched Trees的更多相关文章

  1. 【CF724F】Uniformly Branched Trees 动态规划

    [CF724F]Uniformly Branched Trees 题意:询问n个点的每个非叶子点度数恰好等于d的不同构的无根树的数目. $n\le 1000,d\le 10$. 题解:先考虑有根树的版 ...

  2. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) F - Uniformly Branched Trees 无根树->有根树+dp

    F - Uniformly Branched Trees #include<bits/stdc++.h> #define LL long long #define fi first #de ...

  3. 【CF724F】Uniformly Branched Trees

    题意:询问n个点的每个非叶子点度数恰好等于d的不同构的无根树的数目. n≤1000,d≤10n≤1000,d≤10. 题解: 这题真的是一道非常好的题 首先考虑有根树 定义f[i][j][k]表示i个 ...

  4. 「Codeforces 724F」Uniformly Branched Trees

    题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...

  5. 高考集训讲课(To 高一)

    高考集训讲课(To 高一) 主要是怕下午讲着讲着把自己讲懵了,有一定的迷糊概率 经过机房的讨论,一致认为插头\(DP\)实用性不大,所以这次不讲了,先把重要的讲一讲. 顺便吐槽一下,凭什么另外几个人都 ...

  6. 『正睿OI 2019SC Day6』

    动态规划 \(dp\)早就已经是经常用到的算法了,于是老师上课主要都在讲题.今天讲的主要是三类\(dp\):树形\(dp\),计数\(dp\),\(dp\)套\(dp\).其中计数\(dp\)是我很不 ...

  7. Todo List

    Contest 11.13 2016ACM/ICPC亚洲区青岛站(5/13, solved 7/13) Training 11.06 2016年中国大学生程序设计竞赛(合肥)(solved 6/10) ...

  8. [matlab] 7.快速搜索随机树(RRT---Rapidly-exploring Random Trees) 路径规划

    RRT是一种多维空间中有效率的规划方法.它以一个初始点作为根节点,通过随机采样增加叶子节点的方式,生成一个随机扩展树,当随机树中的叶子节点包含了目标点或进入了目标区域,便可以在随机树中找到一条由从初始 ...

  9. hud 1633 Orchard Trees 点是否在三角形内模板 *

    Orchard Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

随机推荐

  1. Pycharm: 代码跳转如何回退 (小技巧)

    背景 玩Python已经有段时间了, 一般都是通过vim和Pycharm来开发, 真心觉得这两个是神器. Vim神器暂且不说, 今天来分享Pycharm的一个小技巧. 用Pycharm的童鞋都知道, ...

  2. React.js 开发参见问题 Q&A

    文章中我整理了 React.js 开发过程中一些参见问题的解答汇总,供大家参考. 1. 一些课程资源 课程完整的思维导图请查考文章:React.js 入门与实战课程思维导图,我使用的思维导图软件是 M ...

  3. 图像数据增强 (Data Augmentation in Computer Vision)

    1.1 简介 深层神经网络一般都需要大量的训练数据才能获得比较理想的结果.在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁棒性,避免过拟 ...

  4. Centos下部署DRBD+NFS+Keepalived高可用环境记录

    使用NFS服务器(比如图片业务),一台为主,一台为备.通常主到备的数据同步是通过rsync来做(可以结合inotify做实时同步).由于NFS服务是存在单点的,出于对业务在线率和数据安全的保障,可以采 ...

  5. C. A Mist of Florescence

    链接 [http://codeforces.com/contest/989/problem/C] 题意 给定A B C D四个字符个数,让你构造一个矩阵使得他们的个数恰好那么多,联通块算一块 分析 构 ...

  6. Linux内核分析作业第四周

    系统调用的三个层次 一.用户态.内核态和中断 用户通过库函数与系统调用联系起来. 1.内核态 在高的执行级别下,代码可以执行特权指令,访问任意的物理地址,这时的CPU就对应内核态 2.用户态: 在低级 ...

  7. Linux内核第三节 20135332武西垚

    总结部分: Linux内核源代码: Arch 支持不同cpu的源代码:主要关注x86 Init   内核启动的相关代码:主要关注main.c,整个Linux内核启动代码start_kernel函数 K ...

  8. [BUAA_SE_2017]第零次博客

    结缘计算机 你为什么选择计算机专业?你认为条件如何? 计算机是你喜欢的领域吗?是你擅长的领域吗? 说来也巧,高考选择专业时并不知道自己会这般喜欢计算机这个专业,却将其填在了北航的第一志愿. 第一次接触 ...

  9. spring 整合

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  10. Eclipse频繁崩溃问题待解决

    ---------------------------Eclipse---------------------------Java was started but returned exit code ...