CF724F Uniformly Branched Trees

有根树可以统计。无根树难以统计。因为可以换根。

所以不让换根:只要两个无根树在重心位置不同构,就一定不同构

每个本质不同的树在重心位置统计上。

f[i][j][k]i个点根节点度数j,最大子树不超过k。枚举k大小的子树个数转移。

重心两个?

特殊考虑。两端f[n/2][d-1][n/2-1]=x,x*(x-1)/2+x

边界考虑到。

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=;
int mod,n,d;
int f[N][][N];
int jie[],inv[];
int qm(int x,int y){
int ret=;while(y){
if(y&) ret=(ll)ret*x%mod;x=(ll)x*x%mod;y>>=;
}return ret;
}
int dp(int i,int j,int k){
//cout<<" dp "<<i<<" "<<j<<" "<<k<<endl;
if(f[i][j][k]!=-) return f[i][j][k];
if(i==) {
if(j==d-||!j) return f[i][j][k]=;
return f[i][j][k]=;
}
if(i==){
if(k==&&j==) return f[i][j][k]=;
else return f[i][j][k]=;
}
if(j>i-) return f[i][j][k]=;
if(i>&&k==) return f[i][j][k]=; int C=;
int ret=;
int tmp=dp(k,d-,k-);
// cout<<" tmp "<<tmp<<" i j k "<<i<<" "<<j<<" "<<k<<endl;
for(reg m=;m<=j&&m*k<=i-;++m){
ret=(ret+(ll)dp(i-m*k,j-m,k-)*C%mod*inv[m]%mod)%mod;
C=(ll)C*(tmp-+m+)%mod;
}
//cout<<" ret "<<ret<<endl;
return f[i][j][k]=ret;
}
int main(){
rd(n);rd(d);rd(mod);
if(n<=){
puts("");return ;
}
memset(f,-,sizeof f);
jie[]=;
for(reg i=;i<=;++i) jie[i]=(ll)jie[i-]*i%mod;
inv[]=qm(jie[],mod-);
for(reg i=;i>=;--i) inv[i]=(ll)inv[i+]*(i+)%mod;
ll ans=;
ans=(ans+dp(n,d,(n-)/));
// cout<<"ans1 ------"<<ans<<endl;
if(n%==){
ll tmp=;
tmp=dp(n/,d-,n/-);
ans=(ans+(tmp*(tmp+)/%mod))%mod;
}
printf("%I64d",ans);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/3/3 18:21:10
*/

在某个位置为代表统计所有情况,

既可以不重不漏,还可以有的放矢

CF724F Uniformly Branched Trees的更多相关文章

  1. 【CF724F】Uniformly Branched Trees 动态规划

    [CF724F]Uniformly Branched Trees 题意:询问n个点的每个非叶子点度数恰好等于d的不同构的无根树的数目. $n\le 1000,d\le 10$. 题解:先考虑有根树的版 ...

  2. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) F - Uniformly Branched Trees 无根树->有根树+dp

    F - Uniformly Branched Trees #include<bits/stdc++.h> #define LL long long #define fi first #de ...

  3. 【CF724F】Uniformly Branched Trees

    题意:询问n个点的每个非叶子点度数恰好等于d的不同构的无根树的数目. n≤1000,d≤10n≤1000,d≤10. 题解: 这题真的是一道非常好的题 首先考虑有根树 定义f[i][j][k]表示i个 ...

  4. 「Codeforces 724F」Uniformly Branched Trees

    题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...

  5. 高考集训讲课(To 高一)

    高考集训讲课(To 高一) 主要是怕下午讲着讲着把自己讲懵了,有一定的迷糊概率 经过机房的讨论,一致认为插头\(DP\)实用性不大,所以这次不讲了,先把重要的讲一讲. 顺便吐槽一下,凭什么另外几个人都 ...

  6. 『正睿OI 2019SC Day6』

    动态规划 \(dp\)早就已经是经常用到的算法了,于是老师上课主要都在讲题.今天讲的主要是三类\(dp\):树形\(dp\),计数\(dp\),\(dp\)套\(dp\).其中计数\(dp\)是我很不 ...

  7. Todo List

    Contest 11.13 2016ACM/ICPC亚洲区青岛站(5/13, solved 7/13) Training 11.06 2016年中国大学生程序设计竞赛(合肥)(solved 6/10) ...

  8. [matlab] 7.快速搜索随机树(RRT---Rapidly-exploring Random Trees) 路径规划

    RRT是一种多维空间中有效率的规划方法.它以一个初始点作为根节点,通过随机采样增加叶子节点的方式,生成一个随机扩展树,当随机树中的叶子节点包含了目标点或进入了目标区域,便可以在随机树中找到一条由从初始 ...

  9. hud 1633 Orchard Trees 点是否在三角形内模板 *

    Orchard Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

随机推荐

  1. CentOS 6.7下 Samba服务器的搭建与配置(share共享模式)

    https://www.linuxidc.com/Linux/2016-12/138220.htm

  2. Visual Studio 2013版本安装

    这周老师布置了关于Visual Studio 2013版本安装过程的概述,下面我就分享给大家看吧! 首先要下载安装文件,等待下载完成之后,虽然下载文件是ios格式,但我们可以用解压缩工具解压打开.解压 ...

  3. BugPhobia启程篇章:需求分析与功能定位

    0x01 :引言 If you weeped for the missing sunset, you would miss all the shining stars 我看着大巴缓缓的驶过街角,我躲在 ...

  4. rabbitMq与spring boot搭配实现监听

    在我前面有一篇博客说到了rabbitMq实现与zk类似的watch功能,但是那一篇博客没有代码实例,后面自己补了一个demo,便于理解.demo中主要利用spring boot的配置方式, 一.消费者 ...

  5. jiedui

    源代码:https://github.com/hanzhaoyan/jieduizuoye/tree/master 功能要求: 该程序用图形界面实现下面功能:用计算机产生一个100以内的随机数,游戏者 ...

  6. Practice2 结对子之“小学四则运算”

    开发环境:Eclipse,js,css,html 程序完成的方向: 1.可以出表达式里含有负整数(负整数最小不小于-100)的题目,且负数需要带括号,用户输入的结果不用带括号.如: 2*(-4) = ...

  7. 第三个Sprint冲刺第5天

    成员:罗凯旋.罗林杰.吴伟锋.黎文衷 各成员努力完成最后冲刺

  8. node多文件处理方法

    let events = require('events'); let fs = require('fs'); // 将readfile封装成一个方法 多文件处理  function fnreadFi ...

  9. Visual Studio 2017 激活密钥 [复制记录]

    Visual Studio 2017(VS2017) 企业版 Enterprise 注册码:NJVYC-BMHX2-G77MM-4XJMR-6Q8QF Visual Studio 2017(VS201 ...

  10. SQLSERVER 备份数据库的注意事项

    1. SQLSERVER 有一个压缩备份集的功能,能够实现大概15%的压缩比(跟数据类型不同而不同) 之前竟然没发现...浪费了好多磁盘资源.. 多学习多思考..