PostgreSQL work_mem理解
官方说法:
work_mem (integer)
Specifies the amount of memory to be used by internal sort operations and hash tables before writing to temporary disk files. The value defaults to four megabytes (4MB). Note that for a complex query, several sort or hash operations might be running in parallel; each operation will be allowed to use as much memory as this value specifies before it starts to write data into temporary files. Also, several running sessions could be doing such operations concurrently. Therefore, the total memory used could be many times the value of work_mem; it is necessary to keep this fact in mind when choosing the value. Sort operations are used for ORDER BY, DISTINCT, and merge joins. Hash tables are used in hash joins, hash-based aggregation, and hash-based processing of IN subqueries.
声明内部排序操作和Hash表在开始使用临时磁盘文件之前使用的内存限制。 缺省数值是4兆字节(4MB)。请注意对于复杂的查询, 可能会并发行若干排序或者散列表操作;每个都会被允许使用这个参数获得这么多内存, 然后才会开始求助于临时文件。同样,好几个正在运行的会话可能会同时进行排序操作。 因此使用的总内存可能是work_mem的好几倍。 当选择这个值的时候,必须记住这个事实。 ORDER BY, DISTINCT和融合连接都要用到排序操作。 Hash表在散列连接、散列为基础的聚合、散列为基础的IN子查询处理中都要用到。
生成一百万条记录
[postgres@sht-sgmhadoopdn- ~]$ perl -e '@c=("a".."z","A".."Z",0..9); print join("",map{$c[rand@c]}10..20+rand(40))."\n" for 1..1000000' > /tmp/random_strings
[postgres@sht-sgmhadoopdn- ~]$ ls -lh /tmp/random_strings
-rw-r--r-- postgres dba 31M Nov : /tmp/random_strings
创建对应表结构并导入数据
edbstore=# CREATE TABLE test (id serial PRIMARY KEY, random_text text );
CREATE TABLE
edbstore=# \d test
Table "public.test"
Column | Type | Modifiers
-------------+---------+---------------------------------------------------
id | integer | not null default nextval('test_id_seq'::regclass)
random_text | text |
Indexes:
"test_pkey" PRIMARY KEY, btree (id) edbstore=# \d
List of relations
Schema | Name | Type | Owner
--------+-------------+----------+----------
public | tb1 | table | postgres
public | test | table | postgres
public | test_id_seq | sequence | postgres
(3 rows) edbstore=# copy test (random_text) FROM '/tmp/random_strings';
COPY 1000000
edbstore=# select * from test limit 10;
id | random_text
----+-------------------------------------------------
1 | CKQyHTYH5VjeHRUC6YYLF8H5S
2 | G22uBhFmrlA17wTUzf
3 | ey6kX7I6etknzhEFCL
4 | 8LB6navSS8VyoIeqbJBx9RqB3O4AI8GIFExnM7s
5 | bvYt4dKGSiAun6yA5Q7owlKWJGEgD0nlxoBRZm8B
6 | qk1RfhXHwo2PNpbI4
7 | rnPterTw1a3Z3DoL8rhzlltUKb5
8 | l2TrrbDsBkAa5V5ZBKFE59k4T7sDKA58yrS0mJNssl7CJnF
9 | xM9HPgq6QMRsx1aOTqM0LPRQRYkQy50uV
10 | viSJ4p1i3O0dY8tKei3x
(10 rows)
通过每次获取不通的数据量来观察每次explain的执行方式
edbstore=# show work_mem;
work_mem
----------
1MB
(1 row) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 10 ORDER BY random_text ASC;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Sort (cost=8.73..8.75 rows=9 width=35) (actual time=0.188..0.202 rows=10 loops=1)
Sort Key: random_text
Sort Method: quicksort Memory: 25kB
-> Index Scan using test_pkey on test (cost=0.42..8.58 rows=9 width=35) (actual time=0.018..0.037 rows=10 loops=1)
Index Cond: (id <= 10)
Planning time: 1.435 ms
Execution time: 0.294 ms
(7 rows) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 100 ORDER BY random_text ASC;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------
Sort (cost=13.50..13.75 rows=100 width=35) (actual time=0.870..1.027 rows=100 loops=1)
Sort Key: random_text
Sort Method: quicksort Memory: 34kB
-> Index Scan using test_pkey on test (cost=0.42..10.18 rows=100 width=35) (actual time=0.022..0.218 rows=100 loops=1)
Index Cond: (id <= 100)
Planning time: 0.286 ms
Execution time: 1.248 ms
(7 rows) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 1000 ORDER BY random_text ASC;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------
Sort (cost=92.57..95.10 rows=1011 width=35) (actual time=8.846..10.251 rows=1000 loops=1)
Sort Key: random_text
Sort Method: quicksort Memory: 112kB
-> Index Scan using test_pkey on test (cost=0.42..42.12 rows=1011 width=35) (actual time=0.027..2.474 rows=1000 loops=1)
Index Cond: (id <= 1000)
Planning time: 0.286 ms
Execution time: 11.584 ms
(7 rows) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 10000 ORDER BY random_text ASC;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------
Sort (cost=1049.39..1074.68 rows=10116 width=35) (actual time=144.963..160.943 rows=10000 loops=1)
Sort Key: random_text
Sort Method: external merge Disk: 448kB
-> Index Scan using test_pkey on test (cost=0.42..376.45 rows=10116 width=35) (actual time=0.063..22.225 rows=10000 loops=1)
Index Cond: (id <= 10000)
Planning time: 0.149 ms
Execution time: 173.841 ms
(7 rows) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 100000 ORDER BY random_text ASC;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------
Sort (cost=17477.39..17727.70 rows=100122 width=35) (actual time=1325.789..1706.516 rows=100000 loops=1)
Sort Key: random_text
Sort Method: external merge Disk: 4440kB
-> Index Scan using test_pkey on test (cost=0.42..3680.56 rows=100122 width=35) (actual time=0.088..214.490 rows=100000 loops=1)
Index Cond: (id <= 100000)
Planning time: 0.147 ms
Execution time: 1822.008 ms
(7 rows) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 1000000 ORDER BY random_text ASC;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Sort (cost=202426.34..204926.34 rows=1000000 width=35) (actual time=8703.143..10160.421 rows=1000000 loops=1)
Sort Key: random_text
Sort Method: external merge Disk: 44504kB
-> Seq Scan on test (cost=0.00..20732.00 rows=1000000 width=35) (actual time=0.024..1021.491 rows=1000000 loops=1)
Filter: (id <= 1000000)
Planning time: 0.316 ms
Execution time: 10577.464 ms
(7 rows)
| row | Sort Method | Execution time |
| 10 | quicksort Memory: 25kB | 0.294 ms |
| 100 | Sort Method: quicksort Memory: 34kB | 1.248 ms |
| 1000 | Sort Method: quicksort Memory: 112kB | 11.584 ms |
| 10000 | Sort Method: external merge Disk: 448kB | 173.841 ms |
| 100000 | Sort Method: external merge Disk: 4440kB | 1822.008 ms |
| 1000000 | Sort Method: external merge Disk: 44504kB | 10577.464 ms |
通过上图我们可以看到,当sort的数据大于一万条时,explain显示排序方法从 quicksort in memory, 到external merge disk method,说明此时的work_mem的大小不能满足我们在内存的sort和hash表的需求。此时我们将work_mem参数的值调大
edbstore=# set work_mem="500MB";
SET
edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 1000000 ORDER BY random_text ASC;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------
Sort (cost=120389.84..122889.84 rows=1000000 width=35) (actual time=6232.270..6884.121 rows=1000000 loops=1)
Sort Key: random_text
Sort Method: quicksort Memory: 112847kB
-> Seq Scan on test (cost=0.00..20732.00 rows=1000000 width=35) (actual time=0.015..659.035 rows=1000000 loops=1)
Filter: (id <= 1000000)
Planning time: 0.125 ms
Execution time: 7302.621 ms
(7 rows)
| row | Sort Method | Execution time |
| 1000000 | quicksort Memory: 112847kB | 6887.851 ms |
可以发现sort method从merg disk变成quicksort in memory。
https://www.depesz.com/2011/07/03/understanding-postgresql-conf-work_mem/
PostgreSQL work_mem理解的更多相关文章
- postgresql spi开发笔记
#include "postgres.h" #include "fmgr.h" #include <string.h> #ifdef PG_MODU ...
- GitLab在Centos下的安装步骤
第一步:(安装工具包) sudo yum install curl openssh-server postfix cronie sudo service postfix start sudo chkc ...
- Jenkins + Ansible + Gitlab之gitlab篇
前言 持续交付 版本控制器:Gitlab.GitHub 持续集成工具:jenkins 部署工具:ansible 课程安排 Gitlab搭建与流程使用 Ansible环境配置与Playbook编写规范 ...
- 搞IT,算法编程不错的学习网址 & 一些专栏博客大神的地址(汇总)
博客专栏大神 王晓华(算法的乐趣) 算法系列:http://blog.csdn.net/orbit/article/category/830251 PostgreSQL深入理解内核系列:http:// ...
- 二、CentOS 7安装部署GitLab服务器(解决邮箱发信问题)
一.环境安装(10.0.0) 1.安装依赖软件 yum -y install policycoreutils policycoreutils-python openssh-server openssh ...
- PostgreSQL Replication之第一章 理解复制概念(1)
PostgreSQL Replication系列翻译自PostgreSQL Replication一书 在本章中,将会介绍不同的复制概念,您会了解哪些类型的复制对哪一种实用场景是最合适的. 在本章的最 ...
- PostgreSQL Replication之第七章 理解Linux高可用(1)
高可用(HA)是工业长期持续的,不间断的服务.在本章,您将了解高可用软件的历史,概念和实现与PostgreSQL复制和高可用之间的关系. 本章将详细地讲述如下主题: •理解高可用性的目的 •衡量可用性 ...
- PostgreSQL Replication之第三章 理解即时恢复(1)
到现在为止,您已经掌握了一定的理论.因为生活不仅由理论组成(它可能同样重要),是时候深入实际的工作了. 本章的目标是让您明白如何恢复数据到一个给定的时间点.当您的系统崩溃或者有人意外地删除了一个表,不 ...
- PostgreSQL Replication之第二章 理解PostgreSQL的事务日志(5)
2.5 XLOG的内部结构 我们将使用事务贯穿本书,并让您在技术层面上更深地洞察事情是如果工作的,我们已经增加了这部分专门处理XLOG的内部工作机制.我们会尽量避免前往下降到C级,因为这将超出本书的范 ...
随机推荐
- mongodb 3.2 分片 + 副本集
从图中可以看到有四个组件:mongos.config server.shard.replica set. mongos,数据库集群请求的入口,所有的请求都通过mongos进行协调,不需要在应用程序添加 ...
- Win10部署IIS 10.0
win10自带IIS10.0 控制面板 >> 程序 >>启用或关闭Windows功能 勾选完之后会安装IIS,安装完成后 计算机管理 >> 服务和应用程序 > ...
- Centos7下安装Docker(详细的新手装逼教程)
早就听说过Docker,一直不清楚是个啥,今天捣鼓了一下,这里做个记录. --------------------------------------------------------------- ...
- windows程序设计 创建一个新的窗口
#include <windows.h> LRESULT CALLBACK myProc(HWND, UINT, WPARAM, LPARAM); int WINAPI WinMain(H ...
- Oracle时间日期函数
ORACLE日期时间函数大全 TO_DATE格式(以时间:2007-11-02 13:45:25为例) Year: yy two digits 两位年 ...
- GTK# on Ubuntu DllMap
修改配置:/etc/mono/config 新增以下代码 <dllmap dll="libglib-2.0-0.dll" target="libglib-2.0.s ...
- 【Spark-core学习之七】 Spark广播变量、累加器
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...
- apache+jk+tomcat+ssl的https改造
项目背景 公司项目要进行https的改造,目前在测试环境搭建了一下,参考了网上的例子(http://blog.csdn.net/whumr1/article/details/7804992) 这里把主 ...
- java微信开发之地图定位
页面代码: <%@ page language="java" contentType="text/html; charset=UTF-8" pageEnc ...
- jquery首页图片轮播
css样式 .bannerBox {position: relative;width: 100%;height: 348px;margin:0px auto;}.bannerBox .bannerLi ...