PostgreSQL work_mem理解
官方说法:
work_mem (integer)
Specifies the amount of memory to be used by internal sort operations and hash tables before writing to temporary disk files. The value defaults to four megabytes (4MB). Note that for a complex query, several sort or hash operations might be running in parallel; each operation will be allowed to use as much memory as this value specifies before it starts to write data into temporary files. Also, several running sessions could be doing such operations concurrently. Therefore, the total memory used could be many times the value of work_mem; it is necessary to keep this fact in mind when choosing the value. Sort operations are used for ORDER BY, DISTINCT, and merge joins. Hash tables are used in hash joins, hash-based aggregation, and hash-based processing of IN subqueries.
声明内部排序操作和Hash表在开始使用临时磁盘文件之前使用的内存限制。 缺省数值是4兆字节(4MB)。请注意对于复杂的查询, 可能会并发行若干排序或者散列表操作;每个都会被允许使用这个参数获得这么多内存, 然后才会开始求助于临时文件。同样,好几个正在运行的会话可能会同时进行排序操作。 因此使用的总内存可能是work_mem的好几倍。 当选择这个值的时候,必须记住这个事实。 ORDER BY, DISTINCT和融合连接都要用到排序操作。 Hash表在散列连接、散列为基础的聚合、散列为基础的IN子查询处理中都要用到。
生成一百万条记录
[postgres@sht-sgmhadoopdn- ~]$ perl -e '@c=("a".."z","A".."Z",0..9); print join("",map{$c[rand@c]}10..20+rand(40))."\n" for 1..1000000' > /tmp/random_strings
[postgres@sht-sgmhadoopdn- ~]$ ls -lh /tmp/random_strings
-rw-r--r-- postgres dba 31M Nov : /tmp/random_strings
创建对应表结构并导入数据
edbstore=# CREATE TABLE test (id serial PRIMARY KEY, random_text text );
CREATE TABLE
edbstore=# \d test
Table "public.test"
Column | Type | Modifiers
-------------+---------+---------------------------------------------------
id | integer | not null default nextval('test_id_seq'::regclass)
random_text | text |
Indexes:
"test_pkey" PRIMARY KEY, btree (id) edbstore=# \d
List of relations
Schema | Name | Type | Owner
--------+-------------+----------+----------
public | tb1 | table | postgres
public | test | table | postgres
public | test_id_seq | sequence | postgres
(3 rows) edbstore=# copy test (random_text) FROM '/tmp/random_strings';
COPY 1000000
edbstore=# select * from test limit 10;
id | random_text
----+-------------------------------------------------
1 | CKQyHTYH5VjeHRUC6YYLF8H5S
2 | G22uBhFmrlA17wTUzf
3 | ey6kX7I6etknzhEFCL
4 | 8LB6navSS8VyoIeqbJBx9RqB3O4AI8GIFExnM7s
5 | bvYt4dKGSiAun6yA5Q7owlKWJGEgD0nlxoBRZm8B
6 | qk1RfhXHwo2PNpbI4
7 | rnPterTw1a3Z3DoL8rhzlltUKb5
8 | l2TrrbDsBkAa5V5ZBKFE59k4T7sDKA58yrS0mJNssl7CJnF
9 | xM9HPgq6QMRsx1aOTqM0LPRQRYkQy50uV
10 | viSJ4p1i3O0dY8tKei3x
(10 rows)
通过每次获取不通的数据量来观察每次explain的执行方式
edbstore=# show work_mem;
work_mem
----------
1MB
(1 row) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 10 ORDER BY random_text ASC;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Sort (cost=8.73..8.75 rows=9 width=35) (actual time=0.188..0.202 rows=10 loops=1)
Sort Key: random_text
Sort Method: quicksort Memory: 25kB
-> Index Scan using test_pkey on test (cost=0.42..8.58 rows=9 width=35) (actual time=0.018..0.037 rows=10 loops=1)
Index Cond: (id <= 10)
Planning time: 1.435 ms
Execution time: 0.294 ms
(7 rows) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 100 ORDER BY random_text ASC;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------
Sort (cost=13.50..13.75 rows=100 width=35) (actual time=0.870..1.027 rows=100 loops=1)
Sort Key: random_text
Sort Method: quicksort Memory: 34kB
-> Index Scan using test_pkey on test (cost=0.42..10.18 rows=100 width=35) (actual time=0.022..0.218 rows=100 loops=1)
Index Cond: (id <= 100)
Planning time: 0.286 ms
Execution time: 1.248 ms
(7 rows) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 1000 ORDER BY random_text ASC;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------
Sort (cost=92.57..95.10 rows=1011 width=35) (actual time=8.846..10.251 rows=1000 loops=1)
Sort Key: random_text
Sort Method: quicksort Memory: 112kB
-> Index Scan using test_pkey on test (cost=0.42..42.12 rows=1011 width=35) (actual time=0.027..2.474 rows=1000 loops=1)
Index Cond: (id <= 1000)
Planning time: 0.286 ms
Execution time: 11.584 ms
(7 rows) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 10000 ORDER BY random_text ASC;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------
Sort (cost=1049.39..1074.68 rows=10116 width=35) (actual time=144.963..160.943 rows=10000 loops=1)
Sort Key: random_text
Sort Method: external merge Disk: 448kB
-> Index Scan using test_pkey on test (cost=0.42..376.45 rows=10116 width=35) (actual time=0.063..22.225 rows=10000 loops=1)
Index Cond: (id <= 10000)
Planning time: 0.149 ms
Execution time: 173.841 ms
(7 rows) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 100000 ORDER BY random_text ASC;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------
Sort (cost=17477.39..17727.70 rows=100122 width=35) (actual time=1325.789..1706.516 rows=100000 loops=1)
Sort Key: random_text
Sort Method: external merge Disk: 4440kB
-> Index Scan using test_pkey on test (cost=0.42..3680.56 rows=100122 width=35) (actual time=0.088..214.490 rows=100000 loops=1)
Index Cond: (id <= 100000)
Planning time: 0.147 ms
Execution time: 1822.008 ms
(7 rows) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 1000000 ORDER BY random_text ASC;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Sort (cost=202426.34..204926.34 rows=1000000 width=35) (actual time=8703.143..10160.421 rows=1000000 loops=1)
Sort Key: random_text
Sort Method: external merge Disk: 44504kB
-> Seq Scan on test (cost=0.00..20732.00 rows=1000000 width=35) (actual time=0.024..1021.491 rows=1000000 loops=1)
Filter: (id <= 1000000)
Planning time: 0.316 ms
Execution time: 10577.464 ms
(7 rows)
row | Sort Method | Execution time |
10 | quicksort Memory: 25kB | 0.294 ms |
100 | Sort Method: quicksort Memory: 34kB | 1.248 ms |
1000 | Sort Method: quicksort Memory: 112kB | 11.584 ms |
10000 | Sort Method: external merge Disk: 448kB | 173.841 ms |
100000 | Sort Method: external merge Disk: 4440kB | 1822.008 ms |
1000000 | Sort Method: external merge Disk: 44504kB | 10577.464 ms |
通过上图我们可以看到,当sort的数据大于一万条时,explain显示排序方法从 quicksort in memory, 到external merge disk method,说明此时的work_mem的大小不能满足我们在内存的sort和hash表的需求。此时我们将work_mem参数的值调大
edbstore=# set work_mem="500MB";
SET
edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 1000000 ORDER BY random_text ASC;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------
Sort (cost=120389.84..122889.84 rows=1000000 width=35) (actual time=6232.270..6884.121 rows=1000000 loops=1)
Sort Key: random_text
Sort Method: quicksort Memory: 112847kB
-> Seq Scan on test (cost=0.00..20732.00 rows=1000000 width=35) (actual time=0.015..659.035 rows=1000000 loops=1)
Filter: (id <= 1000000)
Planning time: 0.125 ms
Execution time: 7302.621 ms
(7 rows)
row | Sort Method | Execution time |
1000000 | quicksort Memory: 112847kB | 6887.851 ms |
可以发现sort method从merg disk变成quicksort in memory。
https://www.depesz.com/2011/07/03/understanding-postgresql-conf-work_mem/
PostgreSQL work_mem理解的更多相关文章
- postgresql spi开发笔记
#include "postgres.h" #include "fmgr.h" #include <string.h> #ifdef PG_MODU ...
- GitLab在Centos下的安装步骤
第一步:(安装工具包) sudo yum install curl openssh-server postfix cronie sudo service postfix start sudo chkc ...
- Jenkins + Ansible + Gitlab之gitlab篇
前言 持续交付 版本控制器:Gitlab.GitHub 持续集成工具:jenkins 部署工具:ansible 课程安排 Gitlab搭建与流程使用 Ansible环境配置与Playbook编写规范 ...
- 搞IT,算法编程不错的学习网址 & 一些专栏博客大神的地址(汇总)
博客专栏大神 王晓华(算法的乐趣) 算法系列:http://blog.csdn.net/orbit/article/category/830251 PostgreSQL深入理解内核系列:http:// ...
- 二、CentOS 7安装部署GitLab服务器(解决邮箱发信问题)
一.环境安装(10.0.0) 1.安装依赖软件 yum -y install policycoreutils policycoreutils-python openssh-server openssh ...
- PostgreSQL Replication之第一章 理解复制概念(1)
PostgreSQL Replication系列翻译自PostgreSQL Replication一书 在本章中,将会介绍不同的复制概念,您会了解哪些类型的复制对哪一种实用场景是最合适的. 在本章的最 ...
- PostgreSQL Replication之第七章 理解Linux高可用(1)
高可用(HA)是工业长期持续的,不间断的服务.在本章,您将了解高可用软件的历史,概念和实现与PostgreSQL复制和高可用之间的关系. 本章将详细地讲述如下主题: •理解高可用性的目的 •衡量可用性 ...
- PostgreSQL Replication之第三章 理解即时恢复(1)
到现在为止,您已经掌握了一定的理论.因为生活不仅由理论组成(它可能同样重要),是时候深入实际的工作了. 本章的目标是让您明白如何恢复数据到一个给定的时间点.当您的系统崩溃或者有人意外地删除了一个表,不 ...
- PostgreSQL Replication之第二章 理解PostgreSQL的事务日志(5)
2.5 XLOG的内部结构 我们将使用事务贯穿本书,并让您在技术层面上更深地洞察事情是如果工作的,我们已经增加了这部分专门处理XLOG的内部工作机制.我们会尽量避免前往下降到C级,因为这将超出本书的范 ...
随机推荐
- C++ Windows API 读写INI文件
BOOL WritePrivateProfileString( LPCTSTR lpAppName, // INI文件中的一个字段名[节名]可以有很多个节名 LPCTSTR lpKeyName, // ...
- HDU 3033 分组背包(至少选一个)
分组背包(至少选一个) 我真的搞不懂为什么,所以现在就只能当作是模板来用吧 如果有大牛看见 希望评论告诉我 &代码: #include <cstdio> #include < ...
- 蓝桥杯 基础训练 2n皇后
数月前做的2N皇后基本看书敲代码的,然后发现当时的代码不对,正好做到算法提高的8皇后·改,顺便把以前的代码顺带改了下,题目如下: 问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋 ...
- matlab之导入txt文件并取其中一列数据
1.我想导入下面这个文件的内容,并且获取这个文件中的两列数据. 2.首先确保Matlab当前所在文件夹为txt文件所在文件夹,然后命令行执行: X = load('2019_03_21_08_59_0 ...
- C# AsyncCallback异步回调用法示例
using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...
- C#-----中使用using详解
1.using指令 using + 命名空间名字 例:using System; using System.Data; 2.using语句 定义一个范围,在范围结束时处理对象,出了这个范 ...
- SpringDataJpa开发环境的搭建以及使用
一.所需工具 安装jdk.IntelliJ IDEA和mysql数据库. 二.SpringDataJpa快速起步 开发环境的搭建: ①.在IDEA软件上添加依赖包:在http://mvnreposit ...
- Jquery回到顶部效果
<html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> &l ...
- sed 正则的一个小问题
有一段类似以下的文本 aabbccc test[3307]112323553-66778tp aooppx69tp ooppsg aabbccc test[3307]1127233-6674tp bo ...
- 剑指offer(64)滑动窗口中的最大值
题目描述 给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值.例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6 ...