对于webpack的认识始终停留在对脚手架的使用,不得不说脚手架既方便又好用,修改起来也方便,只需要知道webpack中各个配置项的功能,于是对于我们来说,webpack始终就是一个黑盒子,我们完全不清楚里面是如何去运作的。打包时报错,就只能借助google来协助帮忙解决问题,至于为什么要这样解决,什么原理,不管,能解决就好。那么,了解一下基本原理也是有必要。

概念

言归正传,我们一起了解一下webpack运行基本原理,首先先明白几个核心概念,

  • Entry:入口,webpack构建的起始
  • Module:模块,webpack里面一切皆模块,也是代表着文件,从Entry配置的入口文件开始,递归找出依赖的模块
  • Chunk:代码块,找出递归依赖模块经转换后组合成代码块
  • Loader:模块转换器,也就是将模块的内容按照需求装换成新内容
  • Plugin:扩展插件,webpack构建过程中,会在特定的时机广播对应的事件,而插件可以监听这些事件的发生

流程

webpack构建流程,详细过程如下:

  • 初始化:从配置文件或是shell读取与合并参数,得到最终参数,实例化插件new Plugin()
  • 开始编译:通过上一步初始化得到的最终参数,初始化一个Compiler对象,加载插件(依次调用插件中的apply方法),通过执行Compiler.run开始编译
  • 确定入口:根据配置中entry找出所有入口文件
  • 编译模块:从entry出发,调用配置的loader,对模块进行转换,同时找出模块依赖的模块(如何找?见下文),依次递归,直到所有依赖模块完成本步骤处理
  • 完成模块编译:这一步已经使用loader对所有模块进行了转换,得到了转换后的新内容以及依赖关系
  • 输出资源: 根据入口与模块之间的依赖关系,组装成一个个chunk代码块,并且生成文件输出列表
  • 输出成功:根据配置中的输出路径和文件名,将文件写入文件系统,完成构建

事件

整个构建流程会发生很多的事件,来供Plugin监听,这些事件具体的可以分为三个阶段,分别是初始化阶段编译阶段输出阶段,那么具体有哪些事件,这里按阶段分别介绍,

初始化阶段

事件 作用
初始化 从配置文件或是shell读取与合并参数,得到最终参数,依次实例化插件new Plugin()
实例化Compiler 通过上一步初始化得到的最终参数,初始化一个Compiler对象,负责监听文件和启动编译,全局只有一个Compiler对象
加载插件 依次调用插件中的apply方法,同时也会将Compiler实例传入,就可以调用Webpack提供的api,Compiler实例可以说是就是Webpack的实例
environment 将node.js风格的文件系统应用到compiler对象,便可以直接通过compiler来对文件进行操作
entry-option 读取配置中的entry,依次实例化出对应EntryPlugin,为后面该entry的递归解析工作做准备
after-plugins 调完所有内置和配置的插件的apply方法
after-resolvers 根据配置初始化resolvers,resolvers负责在文件系统中寻找制定路径的文件

编译阶段

事件 作用
run 启动一次新的编译,调用Compiler.run()
watch-run 和run类似,区别在于它是在监听模式下进行编译的,这个事件可以获取哪些文件发生了变化从而导致新的一次编译
compile 告诉插件新的一次编译即将启动,并且给插件带上compiler对象
compilation 每当检测到文件的变化,都会有一次新的compilation被创建,一个compilation对象包含了当前的模块资源、编译生成的资源、变化的文件等等的属性和方法,同时记住,在很多事件的的回调中都会将compilation传入,以便使用
make 一个新的Compilation创建完毕,那么就会从entry配置中开始读取文件,使用配置好的loader对文件进行编译,编译完后再找出文件依赖的文件,递归地去编译和解析
after-compile 一次Compilation执行完成
invalid 文件编译错误等异常触发该事件,不会导致webpack退出

Compilation的事件

事件 作用
build-moudle 使用对应的loader去转换一个模块
normal-module-loader 在用loader转换一个模块后,会使用acorn解析转换后的内容输出对应的抽象语法树(ast),以便webpack后面分析代码使用
program 从配置的入口开始,分析生成的ast,遇到require等导入语句时,便会将其加入依赖模块列表,并且对找出的依赖进行递归分析,最终可以弄清所有依赖关系
seal 所有模块及其依赖的模块都通过Loader转换完成,根据依赖关系生成chunk

输出阶段

事件 作用
should-emit 所有需要输出的文件都生成,准备输出,询问哪些文件需要输出,哪些不需要输出
emit 确定好要输出哪些文件后,并执行文件输出,可以在这里获取和修改输出的内容
after-emit 文件输出完毕
done 完成一次完整的编译和输出流程
failed 编译和输出过程中运到异常,导致webpack退出,会直接到这个步骤,可以在这里获取具体原因

总结

Webpack是很好的前端资源加载和打包工具,在webpack里一切皆模块,很好地处理文件之间的依赖关系,这里我们介绍的是些理论性的知识,了解基本概念,知道整个流程是怎么样的,webpack是串行流水线运行的,工作期间会有很多广播事件,来供插件使用,这里我们介绍了各个阶段的事件以及作用,具体代码表示形式,后续文章会引入。

Webpack学习-工作原理(上)的更多相关文章

  1. Cstyle的UEFI导读:第18.0篇 NVRAM的工作原理(上)

        虽有句话说的好,实用的东西记在脑子里.没有的记在笔记本上. 可是如今的信息量越来越大,并且随着时间的推移记忆力会越来越不可靠,所以仅仅好把近期工作之余看的一些东西记录下来,避免被迅速忘记.这里 ...

  2. springmvc工作原理和环境搭建

    SpringMVC工作原理     上面的是springMVC的工作原理图: 1.客户端发出一个http请求给web服务器,web服务器对http请求进行解析,如果匹配DispatcherServle ...

  3. Robotframework 简介及工作原理

    下面通过官网和网上资料来简单介绍下Robotframework及其工作原理. 官方说明: Robot Framework is a generic test automation framework ...

  4. springMVC 的工作原理和机制

    工作原理上面的是springMVC的工作原理图: 1.客户端发出一个http请求给web服务器,web服务器对http请求进行解析,如果匹配DispatcherServlet的请求映射路径(在web. ...

  5. springMVC 的工作原理和机制(转)

    工作原理上面的是springMVC的工作原理图: 1.客户端发出一个http请求给web服务器,web服务器对http请求进行解析,如果匹配DispatcherServlet的请求映射路径(在web. ...

  6. android camera(二):摄像头工作原理、s5PV310 摄像头接口(CAMIF)

    一.摄像头工作原理 上一篇我们讲了摄像头模组的组成,工作原理,做为一种了解.下面我们析摄像头从寄存器角度是怎么工作的.如何阅读摄像头规格书(针对驱动调节时用到关键参数,以GT2005为例). 规格书, ...

  7. 1 weekend110的NN元数据管理机制 + NN工作机制 + DN工作原理

    第一天的笔记,是伪分布hadoop集群搭建, 后面是hadoop Ha的分布式集群搭建 第一天,是HDFS的shell操作 NN工作机制 里面是二进制 DN工作原理 上传完了之后,在hdfs的虚拟路径 ...

  8. 【转】android camera(二):摄像头工作原理、s5PV310 摄像头接口(CAMIF)

    关键词:android  camera CMM 模组 camera参数  CAMIF平台信息:内核:linux系统:android 平台:S5PV310(samsung exynos 4210) 作者 ...

  9. 170529、springMVC 的工作原理和机制

    工作原理上面的是springMVC的工作原理图: 1.客户端发出一个http请求给web服务器,web服务器对http请求进行解析,如果匹配DispatcherServlet的请求映射路径(在web. ...

  10. Spring MVC的工作原理和机制

    Spring  MVC的工作原理和机制 参考: springMVC 的工作原理和机制 - 孤鸿子 - 博客园https://www.cnblogs.com/zbf1214/p/5265117.html ...

随机推荐

  1. css学习-》养成路线

    雅虎工程师提供的CSS初始化示例代码 body,div,dl,dt,dd,ul,ol,li,h1,h2,h3,h4,h5,h6,pre,code,form,fieldset,legend,input, ...

  2. nodejs笔记之流(stream)

    nodejs的stream有四种流类型: 可读:Readable可写:Writable可读可写:Duplex操作被写入数据,然后读出结果:Transform常用事件:data:有数据可读时触发end: ...

  3. Weekly Contest 119

    第一题: 973. K Closest Points to Origin  We have a list of points on the plane.  Find the K closest poi ...

  4. FL Studio里的常规设置介绍

    上期我们介绍了FL Studio中的项目设置,今天我们来介绍FL Studio中的常规设置.要打开常规设置,我们需要在主菜单中选择选项>常规选项,当然也可以直接按快捷键F10. “常规设置”页面 ...

  5. iP私网地址

    私网地址范围:A类10.0.0.0~255.255.255 B类172.16.0.0~172.31.255.255 C类192.168.0.0~192.168.255.255

  6. 纸小墨ink简洁主题story爱上你的故事

    主题介绍 为纸小墨写的一款主题,该主题移植自Yumoe github地址:ink-theme-story Demo ink-theme-story 主题的一些食用说明 菜单 标题旁边有一个 · 字符, ...

  7. LintCode 1.A+B的问题

    LintCode 1.A+B的问题 描述 给出两个整数 a 和 b , 求他们的和. 答案 public class Solution { /** * @param a: An integer * @ ...

  8. oracle数据库查看和解除死锁

    查看死锁: select sess.sid, sess.serial#, lo.oracle_username, lo.os_user_name, ao.object_name, lo.locked_ ...

  9. Java的异常机制

    Java的异常机制 (一)异常的概念 异常是指程序在编译或运行时出现的导致程序不能继续编译或运行的状况.. (二)Throwable类 Throwable类继承自Object类,是Java中所有错误或 ...

  10. 201806 数据处理 SQL、python、shell 哪家强...速度PK(上篇)

    最近在工作中,进行大量的数据处理,使用的是mysql5.7.22,发现当数据量级达到几十万之后,SQL执行速度明显变慢.尤其是当多个表join时,于是就尝试用python pandas进行数据处理,发 ...