原文链接https://www.cnblogs.com/zhouzhendong/p/AGC031D.html

前言

比赛的时候看到这题之后在草稿纸上写下的第一个式子就是

$$f(p,q) = pq^{-1}$$

然后就再也没有改过。

发现了一堆奇奇怪怪的性质可是一直没有用。

直到官方题解出来的时候:

$$\Huge f(p,q) = qp^{-1}$$

题解

我们可以把前面的几个 $a_i$ 写出来。

$$\begin {eqnarray*}a_1 &=& p\\a_2 &=& q\\ a_3 &=& qp^{-1} \\ a_4 &=& qp^{-1} q^{-1}\\ a_5&=&qp^{-1}q^{-1}pq^{-1}\\a_6&=&qp^{-1}q^{-1}ppq^{-1}\\a_7&=&qp^{-1}q^{-1}pqpq^{-1}\\a_8&=&qp^{-1}q^{-1}pqp^{-1}qpq^{-1}\end{eqnarray*}$$

$$A = qp^{-1}q^{-1}p$$

则可以归纳证明:

$$\forall i>6, a_i = Aa_{i-6} A^{-1}$$

于是直接算一下置换 $A$ 的复合幂就好了。

算复合幂只要写成轮换的形式就可以做到时间复杂度 $O(n)$ ,我偷懒写了 $O(n\log n)$ 的快速幂。

代码

#pragma GCC optimize("Ofast","inline")
#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
#define For(i,a,b) for (int i=a;i<=b;i++)
#define Fod(i,b,a) for (int i=b;i>=a;i--)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define _SEED_ ('C'+'L'+'Y'+'A'+'K'+'I'+'O'+'I')
#define outval(x) printf(#x" = %d\n",x)
#define outvec(x) printf("vec "#x" = ");for (auto _v : x)printf("%d ",_v);puts("")
#define outtag(x) puts("----------"#x"----------")
#define outarr(a,L,R) printf(#a"[%d...%d] = ",L,R);\
For(_v2,L,R)printf("%d ",a[_v2]);puts("");
using namespace std;
typedef long long LL;
typedef vector <int> vi;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=100005;
int n,k;
vi p,q,ip,iq,a[10];
vi Inv(vi A){
vi B(n);
For(i,0,n-1)
B[A[i]]=i;
return B;
}
vi Mul(vi A,vi B){
vi C(n);
For(i,0,n-1)
C[i]=A[B[i]];
return C;
}
vi Pow(vi x,int y){
vi ans;
For(i,0,n-1)
ans.pb(i);
for (;y;y>>=1,x=Mul(x,x))
if (y&1)
ans=Mul(ans,x);
return ans;
}
int main(){
n=read(),k=read();
For(i,1,n)
p.pb(read()-1);
For(i,1,n)
q.pb(read()-1);
ip=Inv(p),iq=Inv(q);
a[1]=p,a[2]=q;
For(i,3,6)
a[i]=Mul(a[i-1],Inv(a[i-2]));
int len=(k-1)/6;
vi cir=Pow(Mul(q,Mul(ip,Mul(iq,p))),len);
vi rem=a[k-len*6];
vi res=Mul(cir,Mul(rem,Inv(cir)));
For(i,0,n-1)
printf("%d ",res[i]+1);
return 0;
}

  

AtCoder Grand Contest 031 (AGC031) D - A Sequence of Permutations 其他的更多相关文章

  1. AtCoder Grand Contest 031 简要题解

    AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...

  2. AtCoder Grand Contest 031题解

    题面 传送门 题解 比赛的之后做完\(AB\)就开始发呆了--简直菜的一笔啊-- \(A - Colorful\ Subsequence\) 如果第\(i\)个字母选,那么它前面任意一个别的字母的选择 ...

  3. Atcoder Grand Contest 031 D - A Sequence of Permutations(置换+猜结论)

    Atcoder 题面传送门 & 洛谷题面传送门 猜结论神题. 首先考虑探究题目中 \(f\) 函数的性质,\(f(p,q)_{p_i}=q_i\leftarrow f(p,q)\circ p= ...

  4. AtCoder Grand Contest 031 B - Reversi

    https://atcoder.jp/contests/agc031/tasks/agc031_b B - Reversi Time Limit: 2 sec / Memory Limit: 1024 ...

  5. AtCoder Grand Contest 031 B - Reversi(DP)

    B - Reversi 题目链接:https://atcoder.jp/contests/agc031/tasks/agc031_b 题意: 给出n个数,然后现在你可以对一段区间修改成相同的值,前提是 ...

  6. UPC个人训练赛第十五场(AtCoder Grand Contest 031)

    传送门: [1]:AtCoder [2]:UPC比赛场 [3]:UPC补题场 参考资料 [1]:https://www.cnblogs.com/QLU-ACM/p/11191644.html B.Re ...

  7. Atcoder Grand Contest 024 E - Sequence Growing Hard(dp+思维)

    题目传送门 典型的 Atcoder 风格的计数 dp. 题目可以转化为每次在序列中插入一个 \([1,k]\) 的数,共操作 \(n\) 次,满足后一个序列的字典序严格大于前一个序列,问有多少种操作序 ...

  8. AtCoder Grand Contest 003

    AtCoder Grand Contest 003 A - Wanna go back home 翻译 告诉你一个人每天向哪个方向走,你可以自定义他每天走的距离,问它能否在最后一天结束之后回到起点. ...

  9. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

随机推荐

  1. CF451E Devu and Flowers

    多重集求组合数,注意到\(n = 20\)所以可以用\(2 ^ n * n\)的容斥来写. 如果没有限制那么答案就是\(C(n + s - 1, n - 1)\).对每一个限制依次考虑,加上有一种选多 ...

  2. windows环境下安装composer,然后使用composer安装Laravel

    Composer 不是一个包管理器,它仅仅是一个依赖管理工具,它允许你申明项目所依赖的代码库,并在你的项目中安装这些代码库.它涉及 “packages” 和 “libraries”,但它在每个项目的基 ...

  3. <02>labSQL的配置和使用方法

    任务布置:制作简单地铁站点管理系统<2> 要求一:正确配置系统,建立基本正常的数据通道:要求二:实现地铁站点的登记,拥有查询功能: 正文: 今天介绍labview虚拟仪器软件中  labS ...

  4. Unity Technologies-提供全面的技术支持服务

    Unity Technologies-提供全面的技术支持服务 在收费服务是由Unity大华区面向研发企业推出的一项技术支持服务,以全中文的方式进行,为研发团队解答在使用Unity引擎过程中遇到的各类问 ...

  5. 1. Nagios和 NagiosQL安装及配置

    目录 1. Nagios 和 NagiosQL简介 2. Nagios+NagiosQL搭建环境说明 3. Nagios.Nagios-plugins和NagiosQL的安装 4. 配置NagiosQ ...

  6. 图片下载、渲染操作 小例子 看多FutureTask

    并发执行下载图片操作 import java.util.List; import java.util.concurrent.Callable; import java.util.concurrent. ...

  7. 20155324《网络对抗》Exp06 信息搜集与漏洞扫描

    20155324<网络对抗>Exp06 信息搜集与漏洞扫描 实践内容 各种搜索技巧的应用 DNS IP注册信息的查询 基本的扫描技术:主机发现.端口扫描.OS及服务版本探测.具体服务的查点 ...

  8. h5页面使用js实现保存当前图片到手机相册

    很可惜,这个鬼东西微信内置浏览器不适用 页面: <!doctype html> <html> <head> <meta charset="UTF-8 ...

  9. WebRTC Precompiled 使用

    最近研究webrtc native code,但源码太大(10GB以上)又需要FQ,就找了个预编译的版本https://sourcey.com/precompiled-webrtc-libraries ...

  10. Mock.js简易教程,脱离后端独立开发,实现增删改查功能(转)

    在我们的生产实际中,后端的接口往往是较晚才会出来,并且还要写接口文档,于是我们的前端的许多开发都要等到接口给我们才能进行,这样对于我们前端来说显得十分的被动,于是有没有可以制造假数据来模拟后端接口呢, ...