树形结构应该是贯穿整个数据结构的一个比较重要的一种结构,它的重要性不言而喻!

讲到树!一般都是讨论二叉树,而关于二叉树的定义以及概念这里不做陈诉,可自行搜索。

在C语言里面需要实现一个二叉树,我们需要申明一个结构体,而关于其结构体的多种方法

这里也不一一列出,我采用比较通用的方法:

struct TreeNode{

ElementType Element;

struct TreeNode *Left;

struct TreeNode *RIght;

};

BinaryTree.h:

#ifndef TREE_H
#define TREE_H typedef char TreeElementType; typedef struct TreeNode *PtrToNode;
typedef PtrToNode BinTree; struct TreeNode
{
TreeElementType Element;
struct TreeNode *Left;
struct TreeNode *Right;
}; BinTree CreateTree();//先序遍历创建二叉树
BinTree IterationCreateTree();//先序非递归创建二叉树 void PreOrderTraversal(BinTree BT);
void IterationPreOrderTraversal(BinTree BT); void InOrderTraversal(BinTree BT);
void IterationInOrderTraversal(BinTree BT); void PostOrderTraversal(BinTree BT);
void IterationPostOrderTraversal(BinTree BT); void LevelTraversal(BinTree BT); int SumNode(BinTree BT);
int SumLeafNode(BinTree BT);
int Depth(BinTree BT);//输出整个二叉树的深度 #endif

整个关于二叉树的操作函数都写了它的递归和迭代版本(层次遍历没有写递归版本),为了保持文件的封装性,将整个关于二叉树的简单操作都封装在一个.c文件里

TreeOperate.c:

#include"BinaryTree.h"
#include"Stack.c"
#include"Queue.c"
#include<stdio.h>
#include<stdlib.h> #define MaxSize 50//栈和队列的大小 //先序递归创建二叉树
BinTree CreateTree()
{
TreeElementType ch;
BinTree BT;
ch = getchar();
if(ch == '')
BT = NULL;
else
{
BT = (BinTree)malloc(sizeof(struct TreeNode));
if(NULL == BT)
{
printf("Out of space!!!");
return NULL;
}
BT->Element = ch;
BT->Left = CreateTree();
BT->Right = CreateTree();
}
return BT;
} void PreOrderTraversal(BinTree BT)
{
if(BT)
{
printf("%c ", BT->Element);
PreOrderTraversal(BT->Left);
PreOrderTraversal(BT->Right);
}
} void InOrderTraversal(BinTree BT)
{
if(BT)
{
InOrderTraversal(BT->Left);
printf("%c ", BT->Element);
InOrderTraversal(BT->Right);
}
} void PostOrderTraversal(BinTree BT)
{
if(BT)
{
PostOrderTraversal(BT->Left);
PostOrderTraversal(BT->Right);
printf("%c ", BT->Element);
}
} /*-------------------下面是非递归写法------------------------*/
//先序非递归创建二叉树
BinTree IterationCreateTree()
{
int Flag[MaxSize] = {};
Stack S;
S = CreatStack(MaxSize);
TreeElementType ch;
BinTree Root;
PtrToNode NewCell, T;
printf("请输入简单二叉树的元素类似:222003004500600:\n");
do{
ch = getchar();
if(ch == '')
NewCell = NULL;
else
{
NewCell = (BinTree)malloc(sizeof(struct TreeNode));
if(NULL == NewCell)
{
printf("Alloc is fairure!!");
return NULL;
}
else
{
NewCell->Element = ch;
NewCell->Left = NewCell->Right = NULL;
}
}
//根节点入栈
if(IsEmpty(S) && NewCell)
{
Push(S, NewCell);
Root = NewCell;//第一个进栈的为根节点
Flag[S->TopOfStack] = ;
}
//如果当前(栈顶)节点已经连接左节点,现在连接右节点
else if(Flag[S->TopOfStack] == )
{
T = TopAndPop(S);
T->Right = NewCell;
if(NewCell)
{
Push(S, NewCell);
Flag[S->TopOfStack] = ;//元素进栈后都要置为0,清除隐患
}
}
//该左孩子节点入栈,并连接父亲节点
else
{
Flag[S->TopOfStack] = ;//父亲结点标记为1,表示已经连接左结点
//下面是连接左结点的代码
T = Top(S);
T->Left = NewCell;
if(NewCell)
{
Push(S, NewCell);
Flag[S->TopOfStack] = ;//元素进栈后都要置为0,清除隐患
}
}
}while(!IsEmpty(S)); return Root;
}
//先序
void IterationPreOrderTraversal(BinTree BT)
{
Stack S;
S = CreatStack(MaxSize);
BinTree T = BT;
while(T || !IsEmpty(S))
{
while(T)
{
Push(S, T);
//注意printf的顺序,因为他是在访问左孩子节点时就已经处理了!
printf("%c ", T->Element);
T = T->Left;
}
if(T == NULL)
{
T = TopAndPop(S);
T = T->Right;
}
}
}
//中序
void IterationInOrderTraversal(BinTree BT)
{
Stack S;
S = CreatStack(MaxSize);
BinTree T = BT;
while(T || !IsEmpty(S))
{
while(T)
{
Push(S, T);
T = T->Left;
}
if(T == NULL)
{
T = TopAndPop(S);
//printf在访问右孩子之前就处理的当前元素
printf("%c ", T->Element);
T = T->Right;
}
}
}
//后序
//void IterationPostOrderTraversal(BinTree BT)
//{
// int Flag[MaxSize];
// Stack S;
// S = CreatStack(MaxSize);
// BinTree T = BT;
// while(T || !IsEmpty(S))
// {
// while(T)
// {
// Push(S, T);
// Flag[S->TopOfStack] = 0;//未处理的标记为0
// T = T->Left;
// }
// while(Flag[S->TopOfStack] == 1)
// {
// T = TopAndPop(S);
// printf("%c ", T->Element);
// T = NULL;//该节点被处理后,父亲节点的右孩子置空
// }
// if(!IsEmpty(S))
// {
// T = Top(S);
// T = T->Right;
// Flag[S->TopOfStack] = 1;
// }
// }
//}
//第二种版本
void IterationPostOrderTraversal(BinTree BT)
{
int Flag[MaxSize] = {};
Stack S;
S = CreatStack(MaxSize);
BinTree T = BT;
while(T || !IsEmpty(S))
{
/*将左结点全部入栈*/
if(T)
{
Push(S, T);
Flag[S->TopOfStack] = ;//未处理的标记为0
T = T->Left;
}
/*如果已经访问了该结点的右孩子,将它出队并打印*/
else if(Flag[S->TopOfStack] == )
{
T = TopAndPop(S);
printf("%c ", T->Element);
T = NULL;//该节点被处理后置空,否则会被识别入栈
}
/*如果左孩子为空,则访问它的右孩子*/
else
{
T = Top(S);
T = T->Right;
Flag[S->TopOfStack] = ;//访问了右孩子,标记为1
}
}
}
//层次
void LevelTraversal(BinTree BT)
{
Queue Q;
Q = CreatQueue(MaxSize);
BinTree T = BT;
Enqueue(Q, T);
while(!QIsEmpty(Q))
{
T = FrontAndDequeue(Q);
printf("%c ", T->Element);
if(T->Left)
Enqueue(Q, T->Left);
if(T->Right)
Enqueue(Q, T->Right);
}
} int SumNode(BinTree BT)
{
if(NULL == BT)
return ;
else if(BT->Left == NULL && BT->Right == NULL)
return ;
else
return SumNode(BT->Left) + SumNode(BT->Right) + ;//加1等于是每次返回 加一个根结点
} int SumLeafNode(BinTree BT)
{
if(NULL == BT)
return ;
else if(BT->Left == NULL && BT->Right == NULL)
return ;
else
return SumLeafNode(BT->Left) + SumLeafNode(BT->Right);
} int Depth(BinTree BT)//输出的是整个二叉树的深度
{
int DepthOfLeft = ;
int DepthOfRight = ;
if(NULL == BT)
return ;
else
{
DepthOfLeft = Depth(BT->Left);
DepthOfRight = Depth(BT->Right);
return (DepthOfLeft > DepthOfRight) ? DepthOfLeft + : DepthOfRight + ;
}
}

上文用到的栈的操作和队列的操作出自https://www.cnblogs.com/Crel-Devi/p/9460945.html和https://www.cnblogs.com/Crel-Devi/p/9600940.html,需修改栈和队列同名的函数名称以及Element的名字以及栈和队列的元素类型!!!!!!!(非常重要)

下面给出一个简单的测试代码main.c:

#include"BinaryTree.h"
#include<stdio.h>
#include<stdlib.h> /* run this program using the console pauser or add your own getch, system("pause") or input loop */ int main(int argc, char *argv[]) {
BinTree BT;
printf("请输入二叉树的元素:");
BT = CreateTree();
//BT = IterationCreateTree(); printf("先序遍历(递归):\t");
PreOrderTraversal(BT);
printf("\n");
printf("先序遍历(迭代):\t");
IterationPreOrderTraversal(BT);
printf("\n\n"); printf("中序遍历(递归):\t");
InOrderTraversal(BT);
printf("\n");
printf("中序遍历(迭代):\t");
IterationInOrderTraversal(BT);
printf("\n\n"); printf("后序遍历(递归):\t");
PostOrderTraversal(BT);
printf("\n");
printf("后序遍历(迭代):\t");
IterationPostOrderTraversal(BT);
printf("\n\n"); printf("层次遍历(迭代):\t");
LevelTraversal(BT);
printf("\n\n"); int allnode, leafnode, treedepth;
allnode = SumNode(BT);
leafnode = SumLeafNode(BT);
treedepth = Depth(BT);
printf("二叉树结点总数:%d\t\n", allnode);
printf("二叉树叶节点总数:%d\t\n", leafnode);
printf("二叉树深度:%d\t\n", treedepth);//输出整棵树的深度
printf("\n"); return ;
}

二叉树的简单操作(Binary Tree)的更多相关文章

  1. [Swift]LeetCode144. 二叉树的前序遍历 | Binary Tree Preorder Traversal

    Given a binary tree, return the preorder traversal of its nodes' values. Example: Input: [1,null,2,3 ...

  2. (二叉树 递归) leetcode 144. Binary Tree Preorder Traversal

    Given a binary tree, return the preorder traversal of its nodes' values. Example: Input: [1,null,2,3 ...

  3. 二叉树叶子顺序遍历 · binary tree leaves order traversal

    [抄题]: 给定一个二叉树,像这样收集树节点:收集并移除所有叶子,重复,直到树为空. 给出一个二叉树: 1 / \ 2 3 / \ 4 5 返回 [[4, 5, 3], [2], [1]]. [暴力解 ...

  4. LeetCode 144. 二叉树的前序遍历(Binary Tree Preorder Traversal)

    144. 二叉树的前序遍历 144. Binary Tree Preorder Traversal 题目描述 给定一个二叉树,返回它的 前序 遍历. LeetCode144. Binary Tree ...

  5. (二叉树 BFS) leetcode 107. Binary Tree Level Order Traversal II

    Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left ...

  6. [Swift]LeetCode156.二叉树的上下颠倒 $ Binary Tree Upside Down

    Given a binary tree where all the right nodes are either leaf nodes with a sibling (a left node that ...

  7. [Swift]LeetCode102. 二叉树的层次遍历 | Binary Tree Level Order Traversal

    Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, ...

  8. [Swift]LeetCode199. 二叉树的右视图 | Binary Tree Right Side View

    Given a binary tree, imagine yourself standing on the right side of it, return the values of the nod ...

  9. [Swift]LeetCode257. 二叉树的所有路径 | Binary Tree Paths

    Given a binary tree, return all root-to-leaf paths. Note: A leaf is a node with no children. Example ...

随机推荐

  1. 2019.04.16打卡(java 数组)

    1.  要求输出数组中数据的平均值,并输出所有大于平均值的数据 代码 package block; import java.util.*; public class Average { public ...

  2. 浅谈Tarjan算法

    从这里开始 预备知识 两个数组 Tarjan 算法的应用 求割点和割边 求点-双连通分量 求边-双连通分量 求强连通分量 预备知识 设无向图$G_{0} = (V_{0}, E_{0})$,其中$V_ ...

  3. LINUX之根目录介绍、普通目录创建、删除、复制、移动、权限管理命令记录

    (一)Linux 系统目录结构 登录系统后,在当前命令窗口下输入命令:ls / /bin:bin是Binary的缩写, 这个目录存放着最经常使用的命令. /boot:这里存放的是启动Linux时使用的 ...

  4. WEB前端基础知识点

    因为要告知浏览器的解析器用什么文档标准解析这个文档,所以在文档的开头要写上文档类型声明,H5的文档类型声明要比H4文档类型声明简洁的多.因为H5不基于SGML(标准通用标记语言),所以不需要对DTD文 ...

  5. 20190412wdVBA 排版

    Sub LayoutForExamPaper() Dim StartTime As Variant Dim UsedTime As Variant StartTime = VBA.Timer Appl ...

  6. SmartGit 常见错误提示代码

    1.Failed to connect to newgit.op.ksyun.com port 80: Timed out. Could not update branch states (green ...

  7. 将一个JSON数组[{},{},{}]按一定规则合并到另一个JSON数组[{},{},{}]

    // 将一个JSON数组[{},{},{}]按一定规则合并到另一个JSON数组[{},{},{}] // Object.assign方法的第一个参数是目标对象,后面的参数都是源对象. var list ...

  8. ROM、RAM、CPU、CACHE、FLASH

    内存在电脑中起着举足轻重的作用.内存一般采用半导体存储单元,包括随机存储器(RAM),只读存储器(ROM),以及高速缓存(CACHE).只不过因为RAM是其中最重要的存储器,所以通常所说的内存即指电脑 ...

  9. 怎样使用md命令一次建立多级子目录

    https://jingyan.baidu.com/article/37bce2be30cae21002f3a224.html 点击开始,运行,在运行窗口中输入“cmd”.   打开cmd窗口之后,用 ...

  10. php 类名和方法名相同(构造函数)

    //php 5.6class father{ public function __construct() { echo __METHOD__; }} class son extends father{ ...