【poj2409】 Let it Bead
http://poj.org/problem?id=2409 (题目链接)
题意
一个n个珠子的项链,每个珠子可以被染成t种颜色。项链可以翻转和旋转,问不同的染色方案数。
Solution
Pólya定理。
旋转:如果逆时针旋转i颗珠子的间距,则珠子0,i,2i,······构成一个循环。这个循环有n/gcd(n,i)个元素。根据对称性,所有循环的长度相同,因此一共有gcd(n,i)个循环。这些置换的不动点总数为${\sum_{i=0}^{n-1} t^{gcd(i,n)}}$种,其中t为颜色数。
翻转:需要分两种情况讨论。当n为奇数时,对称轴有n条,每条对称轴形成${\frac{n-1}{2}}$个长度为2的循环和1个长度为1的循环,即一共${\frac{n+1}{2}}$个循环。这些置换的不动点总数为${b = n t^{ \frac{n+1}{2} }}$。当n为偶数时,有两种对称轴。穿过柱子的对称轴有${\frac{n}{2}}$条,各形成${\frac{n}{2}-1}$个长度为2的循环和两个长度为1的循环;不穿过珠子的对称轴有${\frac{n}{2}}$条,各形成${\frac{n}{2}}$个长度为2的循环。这些置换的不动点总数为${b=\frac{n}{2} (t^{\frac{n}{2}+1}+t^{\frac{n}{2}})}$。
代码
// poj2409
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 1<<30
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; LL gcd(LL a,LL b) {
return b==0 ? a : gcd(b,a%b);
}
LL power(LL a,LL b) {
LL res=1;
while (b) {
if (b&1) res*=a;
b>>=1;a*=a;
}
return res;
}
int main() {
LL n,t;
while (scanf("%lld%lld",&t,&n)!=EOF && n && t) {
LL a=0,b=0;
for (int i=0;i<n;i++) a+=power(t,gcd(n,i));
if (n&1) b=n*power(t,(n+1)/2);
else b=n/2*(power(t,n/2+1)+power(t,n/2));
printf("%lld\n",(a+b)/2/n);
}
return 0;
}
【poj2409】 Let it Bead的更多相关文章
- 【POJ2409】Let it Bead Pólya定理
[POJ2409]Let it Bead 题意:用$m$种颜色去染$n$个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的.求不同构的环的个数. $n,m$很小就是了. 题解:在旋转$i ...
- 【poj2409】Let it Bead Polya定理
题目描述 用 $c$ 种颜色去染 $r$ 个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的.求不同构的环的个数. $r·c\le 32$ . 题解 Polya定理 Burnside引理 ...
- 【转】ACM训练计划
[转] POJ推荐50题以及ACM训练方案 -- : 转载自 wade_wang 最终编辑 000lzl POJ 推荐50题 第一类 动态规划(至少6题, 和 必做) 和 (可贪心) (稍难) 第二类 ...
- 【caffe-windows】 caffe-master 之Matlab中model的分类应用
此篇讲述在matlab中,如何将训练好的model用于图像分类.将以mnist为例,主要用到caffe-master\matlab\demo 下的classification_demo.m ,可参考我 ...
- Python高手之路【六】python基础之字符串格式化
Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...
- 【原】谈谈对Objective-C中代理模式的误解
[原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...
- 【原】FMDB源码阅读(三)
[原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...
- 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新
[原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...
- 【调侃】IOC前世今生
前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...
随机推荐
- yii2的权限管理系统RBAC简单介绍
这里有几个概念 权限: 指用户是否可以执行哪些操作,如:编辑.发布.查看回帖 角色 比如:VIP用户组, 高级会员组,中级会员组,初级会员组 VIP用户组:发帖.回帖.删帖.浏览权限 高级会员组:发帖 ...
- 如何数据库表数据导出到excel中
1.首先须要有一个NPOI 2.接下来上代码 private void button1_Click(object sender, EventArgs e) { //1.通过Ado.net读取数据 st ...
- delphi连接sql存储过程
针对返回结果为参数的 一. 先建立自己的存储过程 ALTER PROCEDURE [dbo].[REName] ) AS BEGIN select ROW_NUMBER() over(order by ...
- ngrok
为什么要使用ngrok?/ngrok 作为一个Web开发者,我们有时候会需要临时地将一个本地的Web网站部署到外网,以供它人体验评价或协助调试等等,通常我们会这么做: 找到一台运行于外网的Web服务器 ...
- javascript的defer和async的区别。
我们常用的script标签,有两个和性能.js文件下载执行相关的属性:defer和async defer的含义[摘自https://developer.mozilla.org/En/HTML/Elem ...
- 配置eclipse J2EE环境
早已习惯使用eclipse做Java相关的开发,因为之前安装的是RCP版本,今天发现对于J2EE的开发,在perference中居然没有Axis2的支持,需要添加J2EE的支持插件,特在此说明安装方式 ...
- How To Join XLA_AE_HEADERS and RCV_TRANSACTIONS? [ID 558514.1]
Applies to: Oracle Inventory Management - Version: 12.0.6<max_ver> and later [Release: 12 an ...
- iOS之获取经纬度并通过反向地理编码获取详细地址
_locationManager = [[CLLocationManager alloc] init]; //期望的经度 _locationManager.desiredAccuracy = kCLL ...
- SVN为什么比Git更好
首先我表明一个根本的立场,我个人更喜欢用Git,但是,这仅仅是一个个人偏好.当我们需要将一种技术方案带给整个团队的时候,并不是由我们的个人偏好作为主要决定因素,而应该充分去权衡利弊,选择对团队,对公司 ...
- Junit单元测试
写一个被测试的类 这是类中的一些方法,将一个16进制转化为10进制 reckon()为转化的主要方法,返回结果为10进制数 judge()判断字符是否在0-9,A-F之间,并将字符转化为0-15之中的 ...