二更:把更多的行列式有关内容加了进来(%%%%%Jelly Goat奆佬)

题目描述

给你一个N(n≤10n\leq 10n≤10)阶行列式,请计算出它的值

输入输出格式

输入格式:

第一行有一个整数n
在以下n行中,每行有n个整数,表示该行列式

输出格式:

这个行列式的值

输入输出样例

输入样例#1:

8
2 10 4 4 3 6 10 6
1 10 9 3 2 1 6 7
3 9 8 7 1 1 8 7
2 10 8 6 9 9 3 4
1 7 1 8 2 6 2 3
9 2 4 8 10 6 10 3
3 6 7 9 8 2 8 1
2 9 2 1 10 7 4 5
输出样例#1:

-135742
输入样例#2:

4
1 2 3 4
1 3 4 1
1 4 1 2
1 1 2 3
输出样例#2:

16
首先这是一道非常简单的板子题,他耗费了我两天将近两个多小时的时间,那么我们就来细细分析一下这道题
思路大致如下: 按照高斯消元法,把行列式消成下三角,然后按照公式直接求对角线乘积即为答案
有这么几个坑
1.忘记用double类型,因为行列式做除法的时候肯定是要出小数的,不用double肯定gg
2.没有注意当a[i][i]==0的时候,我们没法按照公式把它下面消为零,所以需要一个换行操作
代码如下
while (a[i][i] ==  && sum<=n) //对是否a[i][i]是0的特判
{
CH2(i, sum + ); //交换x列和y列
ans *= -;
sum++;
}
3.输出的时候忘记控制精度,其实原因是这样的,在小数点后位数多于18个之后,c++会自动转成科学计数法。。。。。。
但是洛谷不认啊喂!!!!!!!,所以输出的时候手动控制一下就好
  printf("%0.0lf", ans);
4.各种奇奇怪怪的诸如循环控制写错了或者是while条件判错了的诡异失误,导致我挂了整整五次
不过这种经历也的确是能让我深刻的记住这道题了吧。
现在贴一下AC代码
#include <iostream>
#include <string>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
double n, a[][], ans = ;
int sum;
inline void CH1(int x, int y, double k) //第y行减k*x
{
for (int i = ; i <= n; ++i)
a[y][i] -= (double)(k * a[x][i]);
}
inline void CH2(int x, int y) //交换x列和y列
{
for (int i = ; i <= n; ++i)
swap(a[i][x], a[i][y]);
}
inline double CH3(int x, double k) //把第x行提出一个公因数k
{
for (int i = ; i <= n; ++i)
a[x][i] /= k;
return k;
}
int main()
{
scanf("%lf", &n);
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
scanf("%lf", &a[i][j]);
for (int i = ; i < n; ++i)
{
sum=i;
while (a[i][i] == && sum<=n) //对是否a[i][i]是0的特判
{
CH2(i, sum + ); //交换x列和y列
ans *= -;
sum++;
}
ans *= CH3(i, a[i][i]);
for (int j = i + ; j <= n; ++j)
CH1(i, j, a[j][i]);
}
for (int i = ; i <= n; ++i)
ans *= a[i][i];
printf("%0.0lf", ans);
return ;
}

 

U66785 行列式求值的更多相关文章

  1. 高斯消元与行列式求值 part1

    两道模板题,思路与算法却是相当经典. 先说最开始做的行列式求值,题目大致为给一个10*10的行列式,求其值 具体思路(一开始看到题我的思路): 1.暴算,把每种可能组合试一遍,求逆序数,做相应加减运算 ...

  2. 洛谷P7112 行列式求值

    行列式求值 这是一个让你掉头发的模板题 行列式的定义 行列式 (\(\texttt{Determinant}\)) 是一个函数定义,取值是一个标量. 对一个 \(n\times n\) 的矩阵 \(A ...

  3. 基于上三角变换或基于DFS的行(列)展开的n阶行列式求值算法分析及性能评估

    进入大一新学期,看完<线性代数>前几节后,笔者有了用计算机实现行列式运算的想法.这样做的目的,一是巩固自己对相关概念的理解,二是通过独立设计算法练手,三是希望通过图表直观地展现涉及的两种算 ...

  4. C语言求行列式的值

    #include "stdafx.h" #include <stdio.h> #include <stdlib.h> #include <window ...

  5. Herding(hdu4709)三点运用行列式求面积

    Herding Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  6. C#程序计算N阶行列式的值及N元一次方程组

    C#程序计算N阶行列式的值及N元一次方程组 用了挺长时间自行完成了C#程序计算N阶行列式的值及N元一次方程组.由于自己没有在网上查阅其他资料,所以只能硬着头皮用最朴素的思想和基础的算法进行编程.在给出 ...

  7. 延迟求值-如何让Lo-Dash再提速x100?

    「注释」作者在本文里没有说明这么一个事实: 目前的版本Lo-Dash v2.4.1并没有引入延迟求值的特性,Lo-Dash 3.0.0-pre中部分方法进行了引入,比如filter(),map(),r ...

  8. python迭代器实现斐波拉契求值

    斐波那契数列(Fibonacci sequence),又称黄金分割数列,也称为"兔子数列":F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).例 ...

  9. 表达式求值(noip2015等价表达式)

    题目大意 给一个含字母a的表达式,求n个选项中表达式跟一开始那个等价的有哪些 做法 模拟一个多项式显然难以实现那么我们高兴的找一些素数代入表达式,再随便找一个素数做模表达式求值优先级表 - ( ) + ...

随机推荐

  1. angular反向代理配置

    Angular-cli 是基于webpack 的一套针对提升angular开发体验的命令行工具. 开发vue的时候,基于webpack的时候当时配置一个反向代理以完全实现前后端分离的体验,既然webp ...

  2. DVWA 黑客攻防演练(九) SQL 盲注 SQL Injection (Blind)

    上一篇文章谈及了 dvwa 中的SQL注入攻击,而这篇和上一篇内容很像,都是关于SQL注入攻击.和上一篇相比,上一篇的注入成功就马上得到所有用户的信息,这部分页面上不会返回一些很明显的信息供你调试,就 ...

  3. Python变量之白首如新,倾盖如故

    python中的变量变量:将运算的中间结果暂存到内存中,方便后续程序调用.变量的命名规则:1.变量名由字母.数字.下划线组成.2.变量名可以用字母.下划线开头,但是不能以数字开头.3.变量名是区分大小 ...

  4. 算法"新"名词

    这个“新”是对于自己而言. 最近几天接触到很多新的名词,如: 回溯法(backtracking):以前知道,但很少用 动态规划(dynamic programming):序列型.矩阵型.区间型.背包等 ...

  5. Managing Large State in Apache Flink®: An Intro to Incremental Checkpointing

    January 23, 2018- Apache Flink, Flink Features Stefan Richter and Chris Ward Apache Flink was purpos ...

  6. 在windows下远程访问linux桌面

    一.安装xrdp工具: #  yum install xrdp #   yum install tigervnc-server #   service xrdp start 以上三个命令执行完毕安装完 ...

  7. Linux实战教学笔记51:Zabbix监控平台3.2.4(三)生产环境案例

    https://www.cnblogs.com/chensiqiqi/p/9162986.html 一,Zabbix生产环境监测案例概述 1.1 项目规划 [x] :主机分组 交换机 Nginx To ...

  8. 基于SpringMVC拦截器和注解实现controller中访问权限控制

    SpringMVC的拦截器HandlerInterceptorAdapter对应提供了三个preHandle,postHandle,afterCompletion方法. preHandle在业务处理器 ...

  9. 使用serialize时多数据传递

    class CartList(APIView): #定义编辑方法 def post(self,request): username = request.POST.get('username') # p ...

  10. python小白——进阶之路——day4天-———流程控制while if循环

    # ### 代码块: 以冒号作为开始,用缩进来划分作用域,这个整体叫做代码块 if 5 == 5: print(1) print(2) # 注意点: 要么全部使用4个空格,要么全部使用1个缩进 ,这样 ...