标题效果:鉴于m整数,之前存在的所有因素t素数。问:有多少子集。他们的产品是数量的平方。

解题思路:

全然平方数就是要求每一个质因子的指数是偶数次。

对每一个质因子建立一个方程。

变成模2的线性方程组。

求解这个方程组有多少个自由变元。答案就是 2^p - 1 。(-1是去掉空集的情况)

注意因为2^p会超出数据范围所以还须要用高精度算法。

200. Cracking RSA

time limit per test: 0.25 sec.

memory limit per test: 65536 KB
input: standard

output: standard
The following problem is somehow related to the final stage of many famous integer factorization algorithms involved in some cryptoanalytical problems, for example cracking well-known RSA public key system. 



The most powerful of such algorithms, so called quadratic sieve descendant algorithms, utilize the fact that if n = pq where p and q are large unknown primes needed to be found out, then if v2=w2(mod n), u ≠ v (mod n) and u ≠ -v (mod n),
then gcd(v + w, n) is a factor of n (either p or q). 



Not getting further in the details of these algorithms, let us consider our problem. Given m integer numbers b1, b2, ..., bm such that all their prime factors are from the set of first t primes, the task is to find such a subset
S of {1, 2, ..., m} that product of bi for i from S is a perfect square i.e. equal to u2 for some integer u. Given such S we get one pair for testing (product of S elements stands for v when w is known from other steps of algorithms which
are of no interest to us, testing performed is checking whether pair is nontrivial, i.e. u ≠ v (mod n) and u ≠ -v (mod n)). Since we want to factor n with maximum possible probability, we would like to get as many such sets as possible. So the interesting
problem could be to calculate the number of all such sets. This is exactly your task. 


Input


The first line of the input file contains two integers t and m (1 ≤ t ≤ 100, 1 ≤ m ≤ 100). The second line of the input file contains m integer numbers bi such that all their prime factors are from t first primes (for example, if t = 3 all their
prime factors are from the set {2, 3, 5}). 1 ≤ bi ≤ 109 for all i. 


Output


Output the number of non-empty subsets of the given set {bi}, the product of numbers from which is a perfect square 




Sample test(s)


Input

3 4 9 20 500 3 
Output




#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-10
///#define M 1000100
#define LL __int64
///#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)?0:x) const int maxn = 210; using namespace std; bool f[maxn+1000];
int k[maxn+1000];
int a[maxn][maxn];
int num[maxn];
int equ, var;
char str1[maxn], str2[maxn]; void Add(char a[], char b[], char c[])
{
int len1 = strlen(a);
int len2 = strlen(b);
int n = max(len1, len2);
int add = 0;
for(int i = 0; i < n; i++)
{
int cnt = 0;
if(i < len1) cnt += a[i]-'0';
if(i < len2) cnt += b[i]-'0';
cnt += add;
add = cnt/10;
c[i] = cnt%10+'0';
}
if(add) c[n++] = add+'0';
c[n] = 0;
} void Sub_1(char a[])
{
int s = 0;
while(a[s] == '0') s++;
a[s]--;
for(int i = 0; i < s; i++)
a[i] = '9';
int len = strlen(a);
while(len > 1 && a[len-1] == '0') len--;
a[len] = 0;
} void Prime()
{
int t = 0;
memset(f, false, sizeof(f));
for(int i = 2; i <= 1005; i++)
{
if(!f[i])
k[t++] = i;
for(int j = 0; j < t; j++)
{
if(i*k[j] > 1005)
break;
f[i*k[j]] = true;
if(i%k[j] == 0)
break;
}
}
} int Gauss()
{
int row, col;
int max_r;
row = col = 0;
while(row < equ && col < var)
{
max_r = row;
for(int i = row+1; i < equ; i++)
{
if(a[i][col]) max_r = i;
}
if(a[max_r][col] == 0)
{
col++;
continue;
}
if(max_r != row)
{
for(int j = col; j <= var; j++) swap(a[max_r][j], a[row][j]);
}
for(int i = row+1; i < equ; i++)
{
if(a[i][col] == 0) continue;
for(int j = col; j <= var; j++) a[i][j] ^= a[row][j];
}
col++;
row++;
}
return var-row;
} int main()
{
Prime();
int n, m;
while(cin >>n>>m)
{
memset(a, 0, sizeof(a));
for(int i = 0; i < m; i++) cin >>num[i];
equ = n;
var = m;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < m; j++)
{
int ans = 0;
while(num[j]%k[i] == 0)
{
ans ++;
num[j]/=k[i];
}
if(ans%2) a[i][j] = 1;
}
}
int N = Gauss();
strcpy(str1, "1");
for(int i = 0; i < N; i++)
{
Add(str1, str1, str2);
strcpy(str1, str2);
}
Sub_1(str1);
for(int i = strlen(str1)-1; i >= 0; i--) cout<<str1[i];
cout<<endl;
}
return 0;
}

版权声明:本文博主原创文章。博客,未经同意不得转载。

SGU 200. Cracking RSA(高斯消元+高精度)的更多相关文章

  1. SGU 200.Cracking RSA(高斯消元)

    时间限制:0.25s 空间限制:4M 题意: 给出了m(<100)个数,这m个数的质因子都是前t(<100)个质数构成的. 问有多少个这m个数的子集,使得他们的乘积是完全平方数. Solu ...

  2. Acdream1217 Cracking' RSA(高斯消元)

    题意:给你m个数(m<=100),每个数的素因子仅来自于前t(t<=100)个素数,问这m个数的非空子集里,满足子集里的数的积为完全平方数的有多少个. 一开始就想进去里典型的dp世界观里, ...

  3. SGU 200 Cracking RSA (高斯消元)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意:给出m个整理,因子全部为前t个素数.问有多少 ...

  4. SGU 200. Cracking RSA (高斯消元求自由变元个数)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=200 200. Cracking RSA time limit per test: ...

  5. HDU2449 Gauss Elimination 高斯消元 高精度 (C++ AC代码)

    原文链接https://www.cnblogs.com/zhouzhendong/p/HDU2449.html 题目传送门 - HDU2449 题意 高精度高斯消元. 输入 $n$ 个 $n$ 元方程 ...

  6. SGU 260.Puzzle (异或高斯消元)

    题意: 有n(<200)个格子,只有黑白两种颜色.可以通过操作一个格子改变它和其它一些格子的颜色.给出改变的关系和n个格子的初始颜色,输出一种操作方案使所有格子的颜色相同. Solution: ...

  7. ACM学习历程—SGU 275 To xor or not to xor(xor高斯消元)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=275 这是一道xor高斯消元. 题目大意是给了n个数,然后任取几个数,让他们xor和 ...

  8. SGU 275 To xor or not to xor 高斯消元求N个数中选择任意数XORmax

    275. To xor or not to xor   The sequence of non-negative integers A1, A2, ..., AN is given. You are ...

  9. SGU 275 To xor or not to xor (高斯消元)

    题目链接 题意:有n个数,范围是[0, 10^18],n最大为100,找出若干个数使它们异或的值最大并输出这个最大值. 分析: 一道高斯消元的好题/ 我们把每个数用二进制表示,要使得最后的异或值最大, ...

随机推荐

  1. atitit查询表改动表字段没反应--解锁锁定的表

    atitit查询表改动表字段没反应--解锁锁定的表 查询表改动表字段没反应 要是使用gui 没反应,最好使用cmd 方式,不卉不个gui 锁上.. ALTER TABLE t_mb_awardweix ...

  2. 收藏的Android很好用的组件或者框架。

    收藏的Android很好用的组件或者框架. android框架  先说两个站点: http://www.androidviews.net/ 非常好的国外开源码站,就是訪问速度有点慢啊 http://w ...

  3. UVA 11235 Frequent values(RMQ)

    Frequent values TimeLimit:3000Ms , ... , an in non-decreasing order. In addition to that, you are gi ...

  4. ecshop 全目录说明

    ECShop 2.5.1 的结构图及各文件相应功能介绍     ECShop2.5.1_Beta upload 的目录           ┣ activity.php 活动列表           ...

  5. Unity3D之挥动武器产生的剑痕特效

    网维教程网 观看很多其它教程 眼下已知3种方法能够做这样的剑痕特效 1.尾随特效 2.程序实现动态面来处理剑痕动画. 3.美术实现剑痕动画,直接坐在模型动画里面 (由于我不会美术所以这个忽略 嘿嘿) ...

  6. 10gocm-&gt;session5-&gt;数据库管理实验

    Oracle数据库管理实验 一 传输表空间 二 创建分区表和分区索引 三 FGA细粒度审计 四 监控索引使用情况 五 创建含特殊字段类型的表 六 Flashback闪回技术 一 传输表空间,将ocmd ...

  7. u-boot TFTP: &#39;Access violation&#39; (2)

    今天做tftp下载时间会遇到以下问题. --->8--- Load address: 0x20000000 Loading: * TFTP error: 'Access violation' ( ...

  8. Linux下一个C(编程入门.h档,.c档,而路多文件的调用)

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdG90b3R1enVvcXVhbg==/font/5a6L5L2T/fontsize/400/fill/I0 ...

  9. oracle 转 mysql 最新有效法(转)

    关键字:Oracle 转 MySQL . Oracle TO MySQL 没事试用了一下Navicat家族的新产品Navicat Premium,他集 Oracle.MySQL和PostgreSQL管 ...

  10. 72_leetcode_Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note: You may assume that ...