SGU 200. Cracking RSA(高斯消元+高精度)
标题效果:鉴于m整数,之前存在的所有因素t素数。问:有多少子集。他们的产品是数量的平方。
解题思路:
全然平方数就是要求每一个质因子的指数是偶数次。
对每一个质因子建立一个方程。
变成模2的线性方程组。
求解这个方程组有多少个自由变元。答案就是 2^p - 1 。(-1是去掉空集的情况)
注意因为2^p会超出数据范围所以还须要用高精度算法。
200. Cracking RSA
memory limit per test: 65536 KB
output: standard
The most powerful of such algorithms, so called quadratic sieve descendant algorithms, utilize the fact that if n = pq where p and q are large unknown primes needed to be found out, then if v2=w2(mod n), u ≠ v (mod n) and u ≠ -v (mod n),
then gcd(v + w, n) is a factor of n (either p or q).
Not getting further in the details of these algorithms, let us consider our problem. Given m integer numbers b1, b2, ..., bm such that all their prime factors are from the set of first t primes, the task is to find such a subset
S of {1, 2, ..., m} that product of bi for i from S is a perfect square i.e. equal to u2 for some integer u. Given such S we get one pair for testing (product of S elements stands for v when w is known from other steps of algorithms which
are of no interest to us, testing performed is checking whether pair is nontrivial, i.e. u ≠ v (mod n) and u ≠ -v (mod n)). Since we want to factor n with maximum possible probability, we would like to get as many such sets as possible. So the interesting
problem could be to calculate the number of all such sets. This is exactly your task.
Input
The first line of the input file contains two integers t and m (1 ≤ t ≤ 100, 1 ≤ m ≤ 100). The second line of the input file contains m integer numbers bi such that all their prime factors are from t first primes (for example, if t = 3 all their
prime factors are from the set {2, 3, 5}). 1 ≤ bi ≤ 109 for all i.
Output
Output the number of non-empty subsets of the given set {bi}, the product of numbers from which is a perfect square
Sample test(s)
Input
3
#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-10
///#define M 1000100
#define LL __int64
///#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)?0:x) const int maxn = 210; using namespace std; bool f[maxn+1000];
int k[maxn+1000];
int a[maxn][maxn];
int num[maxn];
int equ, var;
char str1[maxn], str2[maxn]; void Add(char a[], char b[], char c[])
{
int len1 = strlen(a);
int len2 = strlen(b);
int n = max(len1, len2);
int add = 0;
for(int i = 0; i < n; i++)
{
int cnt = 0;
if(i < len1) cnt += a[i]-'0';
if(i < len2) cnt += b[i]-'0';
cnt += add;
add = cnt/10;
c[i] = cnt%10+'0';
}
if(add) c[n++] = add+'0';
c[n] = 0;
} void Sub_1(char a[])
{
int s = 0;
while(a[s] == '0') s++;
a[s]--;
for(int i = 0; i < s; i++)
a[i] = '9';
int len = strlen(a);
while(len > 1 && a[len-1] == '0') len--;
a[len] = 0;
} void Prime()
{
int t = 0;
memset(f, false, sizeof(f));
for(int i = 2; i <= 1005; i++)
{
if(!f[i])
k[t++] = i;
for(int j = 0; j < t; j++)
{
if(i*k[j] > 1005)
break;
f[i*k[j]] = true;
if(i%k[j] == 0)
break;
}
}
} int Gauss()
{
int row, col;
int max_r;
row = col = 0;
while(row < equ && col < var)
{
max_r = row;
for(int i = row+1; i < equ; i++)
{
if(a[i][col]) max_r = i;
}
if(a[max_r][col] == 0)
{
col++;
continue;
}
if(max_r != row)
{
for(int j = col; j <= var; j++) swap(a[max_r][j], a[row][j]);
}
for(int i = row+1; i < equ; i++)
{
if(a[i][col] == 0) continue;
for(int j = col; j <= var; j++) a[i][j] ^= a[row][j];
}
col++;
row++;
}
return var-row;
} int main()
{
Prime();
int n, m;
while(cin >>n>>m)
{
memset(a, 0, sizeof(a));
for(int i = 0; i < m; i++) cin >>num[i];
equ = n;
var = m;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < m; j++)
{
int ans = 0;
while(num[j]%k[i] == 0)
{
ans ++;
num[j]/=k[i];
}
if(ans%2) a[i][j] = 1;
}
}
int N = Gauss();
strcpy(str1, "1");
for(int i = 0; i < N; i++)
{
Add(str1, str1, str2);
strcpy(str1, str2);
}
Sub_1(str1);
for(int i = strlen(str1)-1; i >= 0; i--) cout<<str1[i];
cout<<endl;
}
return 0;
}
版权声明:本文博主原创文章。博客,未经同意不得转载。
SGU 200. Cracking RSA(高斯消元+高精度)的更多相关文章
- SGU 200.Cracking RSA(高斯消元)
时间限制:0.25s 空间限制:4M 题意: 给出了m(<100)个数,这m个数的质因子都是前t(<100)个质数构成的. 问有多少个这m个数的子集,使得他们的乘积是完全平方数. Solu ...
- Acdream1217 Cracking' RSA(高斯消元)
题意:给你m个数(m<=100),每个数的素因子仅来自于前t(t<=100)个素数,问这m个数的非空子集里,满足子集里的数的积为完全平方数的有多少个. 一开始就想进去里典型的dp世界观里, ...
- SGU 200 Cracking RSA (高斯消元)
转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove 题意:给出m个整理,因子全部为前t个素数.问有多少 ...
- SGU 200. Cracking RSA (高斯消元求自由变元个数)
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=200 200. Cracking RSA time limit per test: ...
- HDU2449 Gauss Elimination 高斯消元 高精度 (C++ AC代码)
原文链接https://www.cnblogs.com/zhouzhendong/p/HDU2449.html 题目传送门 - HDU2449 题意 高精度高斯消元. 输入 $n$ 个 $n$ 元方程 ...
- SGU 260.Puzzle (异或高斯消元)
题意: 有n(<200)个格子,只有黑白两种颜色.可以通过操作一个格子改变它和其它一些格子的颜色.给出改变的关系和n个格子的初始颜色,输出一种操作方案使所有格子的颜色相同. Solution: ...
- ACM学习历程—SGU 275 To xor or not to xor(xor高斯消元)
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=275 这是一道xor高斯消元. 题目大意是给了n个数,然后任取几个数,让他们xor和 ...
- SGU 275 To xor or not to xor 高斯消元求N个数中选择任意数XORmax
275. To xor or not to xor The sequence of non-negative integers A1, A2, ..., AN is given. You are ...
- SGU 275 To xor or not to xor (高斯消元)
题目链接 题意:有n个数,范围是[0, 10^18],n最大为100,找出若干个数使它们异或的值最大并输出这个最大值. 分析: 一道高斯消元的好题/ 我们把每个数用二进制表示,要使得最后的异或值最大, ...
随机推荐
- 《JavaScript设计模式与开发实践》读书笔记之单例模式
1.单例模式 保证一个类仅有一个实例,并提供一个访问它的全局访问点 1.1 传统的单例模式 var Singleton=function(name){ this.name=name; } Single ...
- JAVA insert() 插入字符串 reverse() 颠倒 delete()和deleteCharAt() 删除字符 replace() 替换 substring() 截取子串
insert() 插入字符串 StringBuffer insert(int index,String str) StringBuffer insert(int index,char ch) Stri ...
- mysql经常使用的命令
如何登陆数据库 飞机着陆 mysql -u <username> -p 访问本机数据库 mysql -u <username> -D <d ...
- windows下php开发环境的搭建
环境搭建软件组合为:Apache2.2.9+mysql5.2.32+php5.2.6 下载地址如下 http://download.csdn.net/detail/xttxqjfg/5670455 ...
- SecureCRT 6.7.1 注冊机 和谐 破解 补丁 方法
之前一直在用SecureCRT 6.5.3 版本号,和谐补丁也好找,甚至中文版本号也可找到(眼下仅仅找到了SecureCRT.6.2.0) 可是换为 6.7.1 后就怎么也注冊不了了.. 没办法试了各 ...
- Android源代码下载之《Android新闻client源代码》
介绍 Android新闻client源代码,功能上分为:新闻.关注.读报.微博.里面比較有特色的就是读报功能.真正安装报纸的排版进行读报.给人得感觉就像是在读真实的报纸.事实上即使首页的动态云标签很有 ...
- 445port入侵详细解释
445port入侵具体解释 关于"445port入侵"的内容445port入侵具体解释本站搜索很多其它关于"445port入侵"的内容 445port入侵, ...
- 入门git
入门git 0x01前言 既然没有华丽的出场,那就平凡的分享,首先我要说明一点本篇文章针对Git初学者,对我自己学Git的资源的整合,其实本篇索引应该在我写Git系列文章的时候就紧跟着放上索引的, ...
- Windows IOT
Windows IOT 开发入门(准备工作) 终于抽出空来了,将最近研究的东西记录下来,物联网,万物皆可联网.然后可以做到智能家居,智能生活,智能城市....一大堆.吹牛的就不说了. 在实际应用中 ...
- MVC Razor视图引擎控件
0.日期转化