SGU 200. Cracking RSA(高斯消元+高精度)
标题效果:鉴于m整数,之前存在的所有因素t素数。问:有多少子集。他们的产品是数量的平方。
解题思路:
全然平方数就是要求每一个质因子的指数是偶数次。
对每一个质因子建立一个方程。
变成模2的线性方程组。
求解这个方程组有多少个自由变元。答案就是 2^p - 1 。(-1是去掉空集的情况)
注意因为2^p会超出数据范围所以还须要用高精度算法。
200. Cracking RSA
memory limit per test: 65536 KB
output: standard
The most powerful of such algorithms, so called quadratic sieve descendant algorithms, utilize the fact that if n = pq where p and q are large unknown primes needed to be found out, then if v2=w2(mod n), u ≠ v (mod n) and u ≠ -v (mod n),
then gcd(v + w, n) is a factor of n (either p or q).
Not getting further in the details of these algorithms, let us consider our problem. Given m integer numbers b1, b2, ..., bm such that all their prime factors are from the set of first t primes, the task is to find such a subset
S of {1, 2, ..., m} that product of bi for i from S is a perfect square i.e. equal to u2 for some integer u. Given such S we get one pair for testing (product of S elements stands for v when w is known from other steps of algorithms which
are of no interest to us, testing performed is checking whether pair is nontrivial, i.e. u ≠ v (mod n) and u ≠ -v (mod n)). Since we want to factor n with maximum possible probability, we would like to get as many such sets as possible. So the interesting
problem could be to calculate the number of all such sets. This is exactly your task.
Input
The first line of the input file contains two integers t and m (1 ≤ t ≤ 100, 1 ≤ m ≤ 100). The second line of the input file contains m integer numbers bi such that all their prime factors are from t first primes (for example, if t = 3 all their
prime factors are from the set {2, 3, 5}). 1 ≤ bi ≤ 109 for all i.
Output
Output the number of non-empty subsets of the given set {bi}, the product of numbers from which is a perfect square
Sample test(s)
Input
3
#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-10
///#define M 1000100
#define LL __int64
///#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)?0:x) const int maxn = 210; using namespace std; bool f[maxn+1000];
int k[maxn+1000];
int a[maxn][maxn];
int num[maxn];
int equ, var;
char str1[maxn], str2[maxn]; void Add(char a[], char b[], char c[])
{
int len1 = strlen(a);
int len2 = strlen(b);
int n = max(len1, len2);
int add = 0;
for(int i = 0; i < n; i++)
{
int cnt = 0;
if(i < len1) cnt += a[i]-'0';
if(i < len2) cnt += b[i]-'0';
cnt += add;
add = cnt/10;
c[i] = cnt%10+'0';
}
if(add) c[n++] = add+'0';
c[n] = 0;
} void Sub_1(char a[])
{
int s = 0;
while(a[s] == '0') s++;
a[s]--;
for(int i = 0; i < s; i++)
a[i] = '9';
int len = strlen(a);
while(len > 1 && a[len-1] == '0') len--;
a[len] = 0;
} void Prime()
{
int t = 0;
memset(f, false, sizeof(f));
for(int i = 2; i <= 1005; i++)
{
if(!f[i])
k[t++] = i;
for(int j = 0; j < t; j++)
{
if(i*k[j] > 1005)
break;
f[i*k[j]] = true;
if(i%k[j] == 0)
break;
}
}
} int Gauss()
{
int row, col;
int max_r;
row = col = 0;
while(row < equ && col < var)
{
max_r = row;
for(int i = row+1; i < equ; i++)
{
if(a[i][col]) max_r = i;
}
if(a[max_r][col] == 0)
{
col++;
continue;
}
if(max_r != row)
{
for(int j = col; j <= var; j++) swap(a[max_r][j], a[row][j]);
}
for(int i = row+1; i < equ; i++)
{
if(a[i][col] == 0) continue;
for(int j = col; j <= var; j++) a[i][j] ^= a[row][j];
}
col++;
row++;
}
return var-row;
} int main()
{
Prime();
int n, m;
while(cin >>n>>m)
{
memset(a, 0, sizeof(a));
for(int i = 0; i < m; i++) cin >>num[i];
equ = n;
var = m;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < m; j++)
{
int ans = 0;
while(num[j]%k[i] == 0)
{
ans ++;
num[j]/=k[i];
}
if(ans%2) a[i][j] = 1;
}
}
int N = Gauss();
strcpy(str1, "1");
for(int i = 0; i < N; i++)
{
Add(str1, str1, str2);
strcpy(str1, str2);
}
Sub_1(str1);
for(int i = strlen(str1)-1; i >= 0; i--) cout<<str1[i];
cout<<endl;
}
return 0;
}
版权声明:本文博主原创文章。博客,未经同意不得转载。
SGU 200. Cracking RSA(高斯消元+高精度)的更多相关文章
- SGU 200.Cracking RSA(高斯消元)
时间限制:0.25s 空间限制:4M 题意: 给出了m(<100)个数,这m个数的质因子都是前t(<100)个质数构成的. 问有多少个这m个数的子集,使得他们的乘积是完全平方数. Solu ...
- Acdream1217 Cracking' RSA(高斯消元)
题意:给你m个数(m<=100),每个数的素因子仅来自于前t(t<=100)个素数,问这m个数的非空子集里,满足子集里的数的积为完全平方数的有多少个. 一开始就想进去里典型的dp世界观里, ...
- SGU 200 Cracking RSA (高斯消元)
转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove 题意:给出m个整理,因子全部为前t个素数.问有多少 ...
- SGU 200. Cracking RSA (高斯消元求自由变元个数)
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=200 200. Cracking RSA time limit per test: ...
- HDU2449 Gauss Elimination 高斯消元 高精度 (C++ AC代码)
原文链接https://www.cnblogs.com/zhouzhendong/p/HDU2449.html 题目传送门 - HDU2449 题意 高精度高斯消元. 输入 $n$ 个 $n$ 元方程 ...
- SGU 260.Puzzle (异或高斯消元)
题意: 有n(<200)个格子,只有黑白两种颜色.可以通过操作一个格子改变它和其它一些格子的颜色.给出改变的关系和n个格子的初始颜色,输出一种操作方案使所有格子的颜色相同. Solution: ...
- ACM学习历程—SGU 275 To xor or not to xor(xor高斯消元)
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=275 这是一道xor高斯消元. 题目大意是给了n个数,然后任取几个数,让他们xor和 ...
- SGU 275 To xor or not to xor 高斯消元求N个数中选择任意数XORmax
275. To xor or not to xor The sequence of non-negative integers A1, A2, ..., AN is given. You are ...
- SGU 275 To xor or not to xor (高斯消元)
题目链接 题意:有n个数,范围是[0, 10^18],n最大为100,找出若干个数使它们异或的值最大并输出这个最大值. 分析: 一道高斯消元的好题/ 我们把每个数用二进制表示,要使得最后的异或值最大, ...
随机推荐
- maven中的java库
/* * * <dependency> <groupId>io.netty</groupId> <artifactId>n ...
- 局部权重线性回归(Locally weighted linear regression)
在线性回归中,因为对參数个数选择的问题是在问题求解之前已经确定好的,因此參数的个数不能非常好的确定,假设參数个数过少可能拟合度不好,产生欠拟合(underfitting)问题,或者參数过多,使得函数过 ...
- app服务器
http://heipark.iteye.com/blog/1847421http://heipark.iteye.com/blog/1847421http://wenku.baidu.com/vie ...
- u-boot TFTP: 'Access violation' (2)
今天做tftp下载时间会遇到以下问题. --->8--- Load address: 0x20000000 Loading: * TFTP error: 'Access violation' ( ...
- SQL Server中的查询
本博文简介一下SQL Server中经常使用的几类查询及相关使用的方法. 一.ExecuteScalar方法获取单一值 ExecuteScalar方法是SqlCom ...
- Windows7在自由的虚拟机(微软官方虚拟机)
Windows7在自由的虚拟机(微软官方虚拟机) 前言: 不是说windows7自带的虚拟机最好用,但他的正式版.免费.只是希望你能windows7用户.它将能够自由使用: 还是Vmware. 微软为 ...
- Oracle外键(Foreign Key)使用详细的说明(一)
Oracle外键(Foreign Key)使用详细的说明(一) 1.目标 演示如何Oracle使用外键数据库 2.什么是外键? 1)在Oracle数据库中,外键是用来实现參照完整性的方法之中的一个.打 ...
- 前端构建工具gulp
前端构建工具gulp使用 前端自动化流程工具,用来合并文件,压缩等. Gulp官网 http://gulpjs.com/ Gulp中文网 http://www.gulpjs.com.cn/ Gul ...
- Java 并发专题 : CyclicBarrier 打造一个安全的门禁系统
继续并发专题~ 这次介绍CyclicBarrier:看一眼API的注释: /** * A synchronization aid that allows a set of threads to all ...
- HTML学习_01
html总结 html是一门标记语言,也就是不经过编译就能直接执行的语言,不像是c/c++/java等等须要转换成二进制码, html是一门最主要的学科,提供了一个框架,提供了各种标签和规则,使得语言 ...