主题链接:

http://acm.hdu.edu.cn/showproblem.php?

pid=3836

Equivalent Sets

Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Others)

Total Submission(s): 2890    Accepted Submission(s): 1006

Problem Description
To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.

You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.

Now you want to know the minimum steps needed to get the problem proved.
 
Input
The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.

Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
 
Output
For each case, output a single integer: the minimum steps needed.
 
Sample Input
4 0
3 2
1 2
1 3
 
Sample Output
4
2
Hint
Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.
 
Source
 
Recommend
 

Statistic | Submit | 

problemid=3836" style="color:rgb(26,92,200); text-decoration:none">Discuss | Note
题目意思:

求至少须要增添多少条边,使得该图为强连通图。

解题思路:

tarjan求强连通。然后统计入度为0和出度为0的强连通分量个数,两者的最大值即为答案。

代码:

//#include<CSpreadSheet.h>

#include<iostream>
#include<cmath>
#include<cstdio>
#include<sstream>
#include<cstdlib>
#include<string>
#include<string.h>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<list>
#include<queue>
#include<ctime>
#include<bitset>
#include<cmath>
#define eps 1e-6
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define ll __int64
#define LL long long
#define lson l,m,(rt<<1)
#define rson m+1,r,(rt<<1)|1
#define M 1000000007
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std; #define Maxn 21000
int low[Maxn],dfn[Maxn],dindex,n;
int sta[Maxn],belong[Maxn],bcnt,ss;
bool iss[Maxn];
int de1[Maxn],de2[Maxn];
vector<vector<int> >myv; void tarjan(int cur)
{
//printf(":%d\n",cur);
//system("pause");
int ne; dfn[cur]=low[cur]=++dindex;
iss[cur]=true;
sta[++ss]=cur; for(int i=0;i<myv[cur].size();i++)
{
ne=myv[cur][i];
if(!dfn[ne])
{
tarjan(ne);
low[cur]=min(low[cur],low[ne]);
}
else if(iss[ne]&&dfn[ne]<low[cur])
low[cur]=dfn[ne];
} if(dfn[cur]==low[cur])
{
bcnt++;
do
{
ne=sta[ss--];
iss[ne]=false;
belong[ne]=bcnt;
}while(ne!=cur);
}
} void solve()
{
int i;
ss=bcnt=dindex=0;
memset(dfn,0,sizeof(dfn));
memset(iss,false,sizeof(iss));
for(int i=1;i<=n;i++)
if(!dfn[i])
tarjan(i);
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
while(~scanf("%d",&n))
{
myv.clear();
myv.resize(n+1);
int m;
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
myv[a].push_back(b);
}
solve(); if(bcnt==1)
{
printf("1\n0\n");
continue;
}
int ansa=0,ansb=0; memset(de1,0,sizeof(de1));
memset(de2,0,sizeof(de2)); for(int i=1;i<=n;i++)
{
for(int j=0;j<myv[i].size();j++)
{
int ne=myv[i][j];
if(belong[i]!=belong[ne])
{
de1[belong[ne]]++;//Èë¶È
de2[belong[i]]++; //³ö¶È
} }
}
for(int i=1;i<=bcnt;i++)
{
if(!de1[i])
ansa++;
if(!de2[i])
ansb++;
} ansb=max(ansb,ansa); printf("%d\n",ansb);
}
return 0;
}

版权声明:本文博客原创文章。博客,未经同意,不得转载。

[tarjan] hdu 3836 Equivalent Sets的更多相关文章

  1. hdu 3836 Equivalent Sets

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3836 Equivalent Sets Description To prove two sets A ...

  2. hdu 3836 Equivalent Sets trajan缩点

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  3. hdu 3836 Equivalent Sets(强连通分量--加边)

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  4. hdu——3836 Equivalent Sets

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  5. hdu 3836 Equivalent Sets(tarjan+缩点)

    Problem Description To prove two sets A and B are equivalent, we can first prove A is a subset of B, ...

  6. hdu - 3836 Equivalent Sets(强连通)

    http://acm.hdu.edu.cn/showproblem.php?pid=3836 判断至少需要加几条边才能使图变成强连通 把图缩点之后统计入度为0的点和出度为0的点,然后两者中的最大值就是 ...

  7. HDU - 3836 Equivalent Sets (强连通分量+DAG)

    题目大意:给出N个点,M条边.要求你加入最少的边,使得这个图变成强连通分量 解题思路:先找出全部的强连通分量和桥,将强连通分量缩点.桥作为连线,就形成了DAG了 这题被坑了.用了G++交的,结果一直R ...

  8. hdoj 3836 Equivalent Sets【scc&&缩点】【求最少加多少条边使图强连通】

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  9. HUD——T 3836 Equivalent Sets

    http://acm.hdu.edu.cn/showproblem.php?pid=3836 Time Limit: 12000/4000 MS (Java/Others)    Memory Lim ...

随机推荐

  1. 数组名取地址所算数运算应注意的&quot;trap&quot;

    数组名取地址所算数运算应注意的"trap" 直接看代码: #include <stdio.h> int main() { int array[5]; printf(&q ...

  2. [搜索] hdu 4016 Magic Bitwise And Operation

    主题链接: http://acm.hdu.edu.cn/showproblem.php?pid=4016 Magic Bitwise And Operation Time Limit: 6000/30 ...

  3. YARN简短的建筑

    从Hadoop的0.23版本号,MapReduce进行了全面的彻底的变革.也就是我们今天看到的MapReduce 2.0或者我们也能够叫它YARN. 老版本号的JobTracker有两个基本的功能:资 ...

  4. apache 提示You don't have permission to access /test.php on this server.怎样解决

    原文:apache 提示You don't have permission to access /test.php on this server.怎样解决 关键字: Apache   403  For ...

  5. TCP/IP的经典网络编程

                                                                             TCP/IP网络编程之四书五经             ...

  6. Javascript学习2 - Javascript中的表达式和运算符

    原文:Javascript学习2 - Javascript中的表达式和运算符 Javascript中的运算符与C/C++中的运算符相似,但有几处不同的地方,相对于C/C++,也增加了几个不同的运算符, ...

  7. 挑逗B少年搞计划10 假设你是愿意用我的心脏层剥离一层~

        这些天都非常推迟考试啊.然后,学校已安排一周培训,是的.在延迟学习,大狼医院我真的是正常水平.     幸好我们周六周日不让放假了,不然预计进度直接就停了.这两天也是抽出了时间把敲了一下三层的 ...

  8. 如何使用 RMAN 异构恢复一些表空间

    在oracle 在日常维护的数据库中难免会遇到误删数据和使用(drop.delete. truncate)当我们使用常规手段(flashback query .flashback drop)当数据不能 ...

  9. python3使用smtplib发电子邮件

    smtplib模块smtp简单邮件传输协议client实现.对于多功能性,有时,当你要发送带附件的邮件或图片,使用email.mime加载内容. 码,如以下: import smtplib impor ...

  10. Windows RPC

    转载 Windows RPC Demo实现 本文参考并整理以下相关文章 1. <远程过程调用> -百度百科 2. <RPC 编程> -http://www.ibm.com/de ...