zoj3822 期望dp
每天在一个n*m的棋盘上放棋子,问使得每一行,每一列都有棋子的期望天数
dp[n][m][k] 表示用k个棋子占据了n行,m列,距离目标状态还需要的期望天数
那么dp[n][m][k] = p1 * dp[n][m][k+1] + p2*dp[n+1][m][k+1] + p3*dp[n][m+1][k+1] + p4*dp[n+1][m+1][k+1] + 1
设s= n*m-k, 即剩下多少个地方可以放棋子
p1 = (i*j-k)/s, p1表示放置一棵棋子后,不增加行也不增加列的概率
p2 = (n-i)*j/s, p2表示放置一棵棋子后,只增加行的概率
p3 = (m-j)*i/s, 只增加列的概率
p4 = (n-j)*(m-j)/s , 即增加行又增加列的概率
模拟比赛的时候,第三维开小了,只报wa,不报re,这样的情况,发生好多次了
#pragma warning(disable:4996)
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <vector>
#include <stack>
#include <map>
#include <set>
#include <string>
#include <functional>
using namespace std; /*
*/
double dp[][][];
int main()
{
int N, M, t;
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &N, &M);
if (N == || M == )
{
printf("%.9lf\n", max(N, M)*1.0);
continue;
}
memset(dp, , sizeof(dp));
for (int i = N;i >= ; --i)
{
for (int j = M;j >= ; --j)
{
if (i == N && j == M) continue;
for (int k = i*j;k >= max(i, j); --k)
{
double s = N*M - k;
dp[i][j][k] = (i*j-k)*1.0/s *dp[i][j][k+]+(N - i)*j*1.0 / s *dp[i + ][j][k + ] + (M - j)*i*1.0 / s*dp[i][j + ][k + ] + (N - i)*(M - j)*1.0 / s*dp[i + ][j + ][k + ] + ;
//printf("%d %d %d \n", i, j, k);
} }
} printf("%.9lf\n", dp[][][]);
}
return ;
}
zoj3822 期望dp的更多相关文章
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- 期望dp BZOJ3450+BZOJ4318
BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...
- HDU 4405 期望DP
期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...
- POJ 2096 【期望DP】
题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...
- ZOJ 3822 Domination 期望dp
Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...
- poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)
Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...
随机推荐
- Android应用中使用百度地图API并加入标注(一)
网上一些资料这样的的内容已经过时了,这里是最新的内容,假设哪里不正确,请吐槽... 1)下载百度地图移动版API(Android)开发包 要在Android应用中使用百度地图API,就须要 ...
- 运行yum报错Error: Cannot retrieve metalink for reposit
http://www.netpc.com.cn/593.html 运行yum报错Error: Cannot retrieve metalink for reposit 今天给Centos通过rpm - ...
- UVA11090 Going in Cycle!! (二分+SPFA推断有无负权)
Problem G: Going in Cycle!! Input: standard input Output: standard output You are given a weighted d ...
- android百度地图打包混淆 用不了No such file or directory (2) com.baidu.mapapi.BMapManager.init(Unknown Source)
调用了百度地图地图开发包是baidumapapi_v2_1_1.jar,定位SDK版本是locSDK_3.3.jar 调试的时候能运行!可是打包签名后就运行不了! baidu google 了好久! ...
- jquery的click事件对象试解
在写这篇文档的时候,我并没有深入的去了解jquery的事件对象是什么样的构造,不过以我以往的经验,相信能说道说道,并且可能有百分之八十是正确的,所以我并不建议这篇文档具备一定的权威性,不过可以当成饭后 ...
- vc++远程调试工具
简单来说: 1>在远程机器跑VC自带的远程调试工具msvsmon.exe,并把要调试的程序跑起来 2>用VC调试器附加进程,即可调试 先展开来说: VC8,VC9都自带远程调试工具,可以在 ...
- GNU GPL介绍
怎样在程序中使用GNU许可证 不管使用哪种许可证,使用时须要在每一个程序的源文件里加入两个元素:一个版权声明和一个复制许可声明.说明该程序使用GNU许可证进行授权.另外在声明版权前应该说明 ...
- 开启程序的Visual Styles
首先看看MS对Visual Styles的解释: Windows XP and later operating systems support a feature called visual styl ...
- ThinkPHP页面跳转、Ajax技巧详细介绍(十八)
原文:ThinkPHP页面跳转.Ajax技巧详细介绍(十八) ThinkPHP页面跳转.Ajax技巧详细介绍 一.页面跳转 $this->success('查询成功',U('User/test' ...
- grep与正则表达式,grep、egrep和fgrep
grep用法详解:grep与正则表达式 首先要记住的是: 正则表达式与通配符不一样,它们表示的含义并不相同!正则表达式只是一种表示法,只要工具支持这种表示法, 那么该工具就可以处理正则表达式的字符串. ...