每天在一个n*m的棋盘上放棋子,问使得每一行,每一列都有棋子的期望天数

dp[n][m][k] 表示用k个棋子占据了n行,m列,距离目标状态还需要的期望天数

那么dp[n][m][k] = p1 * dp[n][m][k+1] + p2*dp[n+1][m][k+1] + p3*dp[n][m+1][k+1] + p4*dp[n+1][m+1][k+1] + 1

设s= n*m-k, 即剩下多少个地方可以放棋子

p1 = (i*j-k)/s, p1表示放置一棵棋子后,不增加行也不增加列的概率

p2 = (n-i)*j/s, p2表示放置一棵棋子后,只增加行的概率

p3 = (m-j)*i/s,  只增加列的概率

p4 = (n-j)*(m-j)/s , 即增加行又增加列的概率

模拟比赛的时候,第三维开小了,只报wa,不报re,这样的情况,发生好多次了

 #pragma warning(disable:4996)
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <vector>
#include <stack>
#include <map>
#include <set>
#include <string>
#include <functional>
using namespace std; /*
*/
double dp[][][];
int main()
{
int N, M, t;
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &N, &M);
if (N == || M == )
{
printf("%.9lf\n", max(N, M)*1.0);
continue;
}
memset(dp, , sizeof(dp));
for (int i = N;i >= ; --i)
{
for (int j = M;j >= ; --j)
{
if (i == N && j == M) continue;
for (int k = i*j;k >= max(i, j); --k)
{
double s = N*M - k;
dp[i][j][k] = (i*j-k)*1.0/s *dp[i][j][k+]+(N - i)*j*1.0 / s *dp[i + ][j][k + ] + (M - j)*i*1.0 / s*dp[i][j + ][k + ] + (N - i)*(M - j)*1.0 / s*dp[i + ][j + ][k + ] + ;
//printf("%d %d %d \n", i, j, k);
} }
} printf("%.9lf\n", dp[][][]);
}
return ;
}

zoj3822 期望dp的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  5. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  6. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  7. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  8. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  9. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

随机推荐

  1. javascript学习笔记--迭代函数

    概要 这里的迭代函数指的是对数组对象的操作方法,js数组共有五个迭代函数:every.fifter.forEach.map.some. 1.every every方法,返回值为Boolean类型,tr ...

  2. flex中在basewidget中不能使用图表组件问题

    参考 http://blog.sina.com.cn/s/blog_51e3d0e70101hljz.html

  3. MP3文件的结构与编程

    有一个朋友喜欢听MP3,为了获取MP3,写了一个程序,专门从一家音乐网站上搜索下载mp3,一下子下载了有上千首.这时朋友又犯愁了,这些MP3的歌曲名字都是使用1,2,3,4,..等数字命名,挑选起来十 ...

  4. 利用开源HTML5引擎lufylegend.js结合javascript实现的五子棋人机对弈

    前言     本文主要介绍利用开源引擎 lufylegend.js开发基于Html5的游戏--五子棋,主要叙述其详细开发过程. 游戏规则 玩过五子棋的都应该知道五子棋的规则,这里就简单介绍其规则. 1 ...

  5. 为HttpStatusCodeResult加入customErrors

    asp.net mvc的action返回值为HttpStatusCodeResult时的customErrors总是不起作用 (404和exception时的500,因为他们并不是HttpStatus ...

  6. NEU 1173: 这是物理学的奇迹!! 分解质数

    1173: 这是物理学的奇迹!! 题目描述 goagain在做物理电学实验时需要一个2Ω的电阻,但是他发现他的实验台上只剩下了3Ω,4Ω,5Ω,6Ω的电阻若干,于是goagain把两个4Ω的电阻并联起 ...

  7. docker 私有仓库查询

    docker:/etc/init.d# docker ps -a | grep reg c7d5592a3658 registry "docker-registry" 11 min ...

  8. 用VBA宏从一个工作薄复制内容到另一个工作薄

    我们项目管理有两个工作薄,一个里面有多个表,每天建一个,记录当天项目,另一个工作薄,有多个表,其中一个是所有项目汇总. 以前都是第一个工作薄一个表做完,再复制粘贴到第二个工作薄的汇总表中. 写了个VB ...

  9. STM32M CUBE实现printf打印调试信息以及实现单字节接收

    在写单片机程序时我们一般喜欢使用printf来通过串口打印调试信息,但这个函数是不能够直接使用的.必须做点对库函数的修改. 具体project下载地址: http://download.csdn.ne ...

  10. [Cocos2d-x]随机数

    Cocos2d-x为我们提供了生成随机数的宏:CCRANDOM_0_1() 具体定义如下: /** @def CCRANDOM_0_1 returns a random float between 0 ...