Description

  你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份。然而数据备份的工作是枯燥乏味
的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣。已知办公
楼都位于同一条街上。你决定给这些办公楼配对(两个一组)。每一对办公楼可以通过在这两个建筑物之间铺设网
络电缆使得它们可以互相备份。然而,网络电缆的费用很高。当地电信公司仅能为你提供 K 条网络电缆,这意味
着你仅能为 K 对办公楼(或总计2K个办公楼)安排备份。任一个办公楼都属于唯一的配对组(换句话说,这 2K 
个办公楼一定是相异的)。此外,电信公司需按网络电缆的长度(公里数)收费。因而,你需要选择这 K 对办公
楼使得电缆的总长度尽可能短。换句话说,你需要选择这 K 对办公楼,使得每一对办公楼之间的距离之和(总距
离)尽可能小。下面给出一个示例,假定你有 5 个客户,其办公楼都在一条街上,如下图所示。这 5 个办公楼分
别位于距离大街起点 1km, 3km, 4km, 6km 和 12km 处。电信公司仅为你提供 K=2 条电缆。
  上例中最好的配对方案是将第 1 个和第 2 个办公楼相连,第 3 个和第 4 个办公楼相连。这样可按要求使用
 K=2 条电缆。第 1 条电缆的长度是 3km-1km=2km ,第 2 条电缆的长度是 6km-4km=2km。这种配对方案需要总长
 4km 的网络电缆,满足距离之和最小的要求。

非常神的一道题.
据说是模拟费用流(你也可以说是贪心加堆)
考虑最朴素的贪心:将所有元素都塞进一个堆里,那完一个就给旁边的打上标记,以此反复迭代.
不过,不难证明这种方法是完全错误的.
原因很简单:这个方法不能反悔,即每一个决策都是永久性的。
我们希望由可以反悔的机会。
首先,我们可以得到一个结论:
假若 $arr[i]$ 为当前数列中最小值,那么,如果不选 $arr[i]$,则一定要选择 $arr[i-1]$ 与 $arr[i+1]$。
于是,在加入 $arr[i]$,将其累积到答案中,并标记 $arr[i-1]$ 与 $arr[i+1]$ 不能选后,我们再将 $i$ 覆盖为 $arr[i-1]+arr[i+1]-arr[i]$。
为什么这样处理呢?
$arr[i]+arr[i-1]+arr[i+1]-arr[i]$ = $arr[i+1]+arr[i-1]$。以此达到了一个不断决策并反悔的过程。
以后可以专门学习一下模拟费用流,应该会对该问题有一个更加深刻的认识。

Code:

#include<bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 1000000
#define inf 100000000000
using namespace std;
struct Node{
long long key;
int id;
Node(long long a=0,int b=0):key(a),id(b){}
bool operator < ( Node c) const{
return key > c.key;
}
};
priority_queue<Node>Q;
int tag[maxn],suf[maxn],pre[maxn];
long long h[maxn],arr[maxn];
int main(){
// setIO("input");
int n,k;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;++i) scanf("%lld",&arr[i]);
for(int i=1;i<=n;++i) { h[i]=(long long) arr[i]-arr[i-1], suf[i]=i+1,pre[i]=i-1; }
h[0]=inf, suf[n]=pre[2]=0;
for(int i=2;i<=n;++i) Q.push(Node(h[i],i));
long long ans = 0;
for(int i=1;i<=k;++i) {
while(tag[Q.top().id]) Q.pop();
Node u = Q.top();
ans += (long long) u.key;
int cur = u.id;
int l = pre[cur],r = suf[cur];
h[cur] = h[l]+h[r]-h[cur];
tag[l]=tag[r]=1;
h[l]=h[r]=inf;
pre[cur]=pre[l],suf[pre[cur]] = cur;
suf[cur]=suf[r],pre[suf[r]] = cur;
Q.pop();
Q.push(Node(h[cur],cur));
}
printf("%lld",ans);
return 0;
}

  

BZOJ1150 [CTSC2007] 数据备份Backup 贪心_堆_神题的更多相关文章

  1. BZOJ1150 [CTSC2007]数据备份Backup 链表+小根堆

    BZOJ1150 [CTSC2007]数据备份Backup 题意: 给定一个长度为\(n\)的数组,要求选\(k\)个数且两两不相邻,问最小值是多少 题解: 做一个小根堆,把所有值放进去,当选择一个值 ...

  2. BZOJ1150 [CTSC2007]数据备份Backup 贪心 堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1150 题意概括 数轴上面有一堆数字. 取出两个数字的代价是他们的距离. 现在要取出k对数,(一个数 ...

  3. bzoj1150 [CTSC2007]数据备份Backup 双向链表+堆

    [CTSC2007]数据备份Backup Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2727  Solved: 1099[Submit][Stat ...

  4. BZOJ1150 [CTSC2007]数据备份Backup 【堆 + 链表】

    题目 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的 ...

  5. BZOJ1150[CTSC2007]数据备份Backup——模拟费用流+堆+链表

    题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游 ...

  6. bzoj1150: [CTSC2007]数据备份Backup

    题目大意: 在n个点中,选出k对相邻的互不相同的点,使k段距离的总和最小. 贪心,双向链表. 首先,点之间的距离是动态的,所以要用堆来维护.   每次都选择最近的点.但因为其他情况,可能最终不会选择这 ...

  7. bzoj 1150: [CTSC2007]数据备份Backup【链表+堆】

    参考:http://blog.csdn.net/Regina8023/article/details/44158947 神奇的做法.题意相当于若干个数取不相邻的k个使最小.先把数组差分,len表示这段 ...

  8. 【BZOJ1150】[CTSC2007]数据备份Backup 双向链表+堆(模拟费用流)

    [BZOJ1150][CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此 ...

  9. 【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)

    1150: [CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设 ...

随机推荐

  1. Golang - 复合类型

    目录 Golang - 复合类型 1. 指针 2. new()和make() 3. 数组 4. slice 5. Map 6. 结构体 7. 结构体参数 Golang - 复合类型 1. 指针 go语 ...

  2. 【hihocoder 1476】矩形计数

    [题目链接]:http://hihocoder.com/problemset/problem/1476 [题意] [题解] 首先不考虑黑格子,计算出一共有多少个矩形: 枚举矩形的大小r×c,这样大小的 ...

  3. fzu 2087并查集的运用求最小生成树的等效边

    //对数组排序后,对于边相同并且边的两端不在一个集合内的一定是等效边或者必加边, //第一数数,第二合并集合 #include<stdio.h> #include<stdlib.h& ...

  4. [Angular] Performance Caching Policy - Cache First, Network Last

    If you want to cache API response by using angular service-worker, you can do it in: src/ngsw-config ...

  5. 系统报 “client没有所需的特权” 的解决方法

    今在对服务端代码进行单元測试的时候.突然报出例如以下错误: client没有所需的特权 后经网上查找,相同的问题都是属于对C盘读写的问题.回忆自己的项目也须要对C盘进行创建文件夹和读写文件.故尝试运行 ...

  6. Spring技术内幕:SpringIOC原理学习总结

    前一段时候我把Spring技术内幕的关于IOC原理一章看完,感觉代码太多,不好掌握,我特意又各方搜集了一些关于IOC原理的资料,特加深一下印象,以便真正掌握IOC的原理. IOC的思想是:Spring ...

  7. ntp服务及时间同步问题

    今有一小型项目,全然自主弄,原来以为非常easy的NTP服务.我给折腾了2个多小时才整撑头(曾经都是运维搞,没太注意,所以这技术的东西.在简单都须要亲尝啊).这里记录为以后别再浪费时间. 目标环境,5 ...

  8. F5设备控制脚本

    此脚本用于控制F5设备,可对pool成员进行操作及成员状态,该脚本及源自于f5官网 使用格式: 1.查看pool成员状态 /usr/bin/perl /scripts/togglepoolmember ...

  9. 【cl】sikuli下载安装

    前提条件: 1.请确保你已经安装java 6 JRE 32位版本(如果是java 7 或者是64位JRE 那是不被支持的) 2.请确定你已经卸载的先前的sikuli版本(尤其是0.10.x版本) 3. ...

  10. MyBatis中sqlSession操作数据库,不报错但无法实现数据修改(增、改、删)

    public void addCustomerTest() throws Exception { SqlSession sqlSession = MyBatisUtils.getSession(); ...