题意:

考虑所有满足2 ≤ a ≤ 5和2 ≤ b ≤ 5的整数组合生成的幂ab

22=4, 23=8, 24=16, 25=32
32=9, 33=27, 34=81, 35=243
42=16, 43=64, 44=256, 45=1024
52=25, 53=125, 54=625, 55=3125

如果把这些幂按照大小排列并去重,我们得到以下由15个不同的项组成的序列:

4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125

在所有满足2 ≤ a ≤ 100和2 ≤ b ≤ 100的整数组合生成的幂ab排列并去重所得到的序列中,有多少个不同的项?


方法一:例如 83实际上在之前出现了( 即29 ),所以可以找到 1 ~ 100 中任意数 x 的最小底数 num[x] ,将所有的 x 的幂的形式转化为 num[x] 的幂的形式,扫描一下那些幂出现过即可,并不需要计算出具体的数值!

/*************************************************************************
> File Name: euler029.c
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年06月28日 星期三 18时53分57秒
************************************************************************/ #include <stdio.h>
#include <math.h>
#include <inttypes.h> #define MAX_RANGE 700
#define MAX_N 100 int32_t num[MAX_RANGE] = {0}; // num[x]代表x的最小底数 void InitMinFactor() {
for (int32_t i = 2 ; i <= MAX_N ; i++) {
if (num[i]) continue;
num[i] = i;
for (int32_t j = i * i ; j <= MAX_N ; j *= i) {
if (num[j]) continue;
num[j] = i;
}
}
} int32_t main() { int32_t DistinctPowers[MAX_N + 10][MAX_RANGE] = {0}; InitMinFactor(); for (int32_t i = 2 ; i <= MAX_N ; i++) {
int32_t numPow = (int32_t)floor( log10(i)*1.0 / log10(num[i]) + 0.5);
for (int32_t j = 2 ; j <= MAX_N ; j++) {
DistinctPowers[ num[i] ][numPow * j]++;
}
} int32_t ans = 0;
for (int32_t i = 2 ; i <= MAX_N ; i++) {
if (num[i] != i) continue;
for (int32_t j = 2 ; j <= MAX_RANGE ; j++) {
if (DistinctPowers[i][j] != 0) ans++;
}
}
printf("%d\n",ans);
return 0;
}

方法二:对于任意的大整数来说我们都可以将它进行质因数分解,对于每个大整数它的质因数分解后的表示形式是唯一的,我们可以对大整数进行质因数分解来获取它的表示形式从而进行判重。

/*************************************************************************
> File Name: euler029t2.c
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年06月29日 星期四 10时15分46秒
************************************************************************/ #include <stdio.h>
#include <algorithm>
#include <memory.h>
#include <inttypes.h> #define MAX_N 100 typedef struct {
int32_t num , times; // num代表M集合中的素数Pi , times代表Ai
} intnode; typedef struct {
int32_t p_num;
intnode p[10];
} bigint; int32_t prime[MAX_N + 5] = {0};
int32_t num_len;
bigint num[MAX_N * MAX_N]; // num[x]代表x能分解的M的集合 void init() {
for (int32_t i = 2 ; i <= MAX_N ; i++) {
if (!prime[i])
for (int32_t j = i ; j <= MAX_N ; j += i)
if (!prime[j]) prime[j] = i;
}
num_len = 0;
memset(num , 0 , sizeof(num));
} void addBigInt(int32_t a , int32_t b) { // 将a^b转化成对应的集合M并将其储存到num数组中
int32_t times , pre_num , ind;
while (a != 1) {
pre_num = prime[a]; // pre_num 是 a能整除的最小素因子
times = 0;
while (prime[a] == pre_num) { // 不断去除掉目前a的最小素因数并记录下最小素因子的幂
a /= prime[a];
times++;
}
ind = num[num_len].p_num; // ind是集合M的编号 num_len是大整数的编号
num[num_len].p[ind].num = pre_num;
num[num_len].p[ind].times = times * b;
num[num_len].p_num++;
}
num_len++;
}
int32_t cmp(const void* a , const void* b) {
return memcmp(a , b , sizeof(bigint));
}
int32_t main() {
init();
for (int32_t i = 2 ; i <= 100 ; i++) {
for (int32_t j = 2 ; j <= 100 ; j++) {
addBigInt(i , j);
}
}
printf("1\n");
qsort(num , num_len , sizeof(bigint) , cmp);
printf("2\n");
int32_t total = 0;
for (int32_t i = 0 ; i < num_len - 1 ; i++) {
if (memcmp(&num[i] , &num[i + 1] , sizeof(bigint)) == 0) continue;
total++;
}
printf("3\n");
printf("%d\n",total);
return 0;
}

Project Euler 29 Distinct powers( 大整数质因数分解做法 + 普通做法 )的更多相关文章

  1. algorithm@ 大素数判定和大整数质因数分解

    #include<stdio.h> #include<string.h> #include<stdlib.h> #include<time.h> #in ...

  2. Distinct powers (Project Euler 29 加强版)

    题目大意: $2<=a,b<=n$ 求 $a^b$能表示多少不同的正整数. 原题中n=100,可以直接暴力求解,常见的两种解法是写高精度或者取对数判断相等. 直觉告诉我应该有更加优秀的解法 ...

  3. Project Euler 21 Distinct primes factors( 整数因子和 )

    题意: 记d(n)为n的所有真因数(小于n且整除n的正整数)之和. 如果d(a) = b且d(b) = a,且a ≠ b,那么a和b构成一个亲和数对,a和b被称为亲和数. 例如,220的真因数包括1. ...

  4. Project Euler 23 Non-abundant sums( 整数因子和 )

    题意: 完全数是指真因数之和等于自身的那些数.例如,28的真因数之和为1 + 2 + 4 + 7 + 14 = 28,因此28是一个完全数. 一个数n被称为亏数,如果它的真因数之和小于n:反之则被称为 ...

  5. Project Euler 47 Distinct primes factors( 筛法记录不同素因子个数 )

    题意: 首次出现连续两个数均有两个不同的质因数是在: 14 = 2 × 715 = 3 × 5 首次出现连续三个数均有三个不同的质因数是在: 644 = 22 × 7 × 23645 = 3 × 5 ...

  6. project euler 48 Self powers 解决乘法爆long long

    题目链接 求 $ 1^1+2^2+\cdots + 1000^{1000} $ %1e10 的结果. 唯一的坑点是会爆longlong, 所以用特殊的乘法. #include <iostream ...

  7. Project Euler 48 Self powers( 大数求余 )

    题意: 项的自幂级数求和为 11 + 22 + 33 + - + 1010 = 10405071317. 求如下一千项的自幂级数求和的最后10位数字:11 + 22 + 33 + - + 100010 ...

  8. Python练习题 031:Project Euler 003:最大质因数

    本题来自 Project Euler 第3题:https://projecteuler.net/problem=3 # Project Euler: Problem 3: Largest prime ...

  9. (Problem 29)Distinct powers

    Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...

随机推荐

  1. [bzoj4659\2694]Lcm_数论_莫比乌斯反演

    Lcm bzoj-4659 bzoj-2694 题目大意:给出A,B,考虑所有满足l<=a<=A,l<=b<=B,且不存在n>1使得n^2同时整除a和b的有序数对(a,b ...

  2. POJ 3678

    这道题唯一一个注意的地方是,如出现X\/Y=0这种关系时,X=0,Y=0.已经是可以肯定的关系了,所以可以连边X->-X. 我也错了上面这地方.看来,还不够.以后要细心才好. #include ...

  3. [\S\s]+ 可以匹配多行html,最常用的还是.*?

    [\S\s]+ 可以匹配多行html,最常用的还是.*?

  4. adb命令查看报名和查看手机分辨率

    打开所要查看的应用包名: $ adb shell dumpsys activity top | head -n 10 TASK com.ss.android.article.news id=5 ACT ...

  5. 64bit Centos6.4搭建hadoop-2.5.1

    64bit Centos6.4搭建hadoop-2.5.1 1.分布式环境搭建 採用4台安装Linux环境的机器来构建一个小规模的分布式集群. 当中有一台机器是Master节点,即名称节点,另外三台是 ...

  6. Android与JS互相调用以及注意

    近期项目中常常使用Html5而Android与JS调用常常会用到,这里记录一下,測试系统5.0以上. 这里先贴一下源代码 Activity: package jwzhangjie.com.webvie ...

  7. 2016.04.25,英语,《Vocabulary Builder》Unit 18

    capit, from the Latin word for 'head', caput ['keɪpət] n.头,首 , turns up in some pretty important pla ...

  8. GNU TeXmacs 1.99.8 发布,所见即所得科学编辑器(看看老实的GUI)

    GNU TeXmacs 1.99.8 已发布,这是一个支持各种数学公式的所见即所得编辑器,可以用来编辑文本.图形.数学.交互内容,它的界面非常友好,并且内置高质量的排版引擎. 更新内容: bug 修复 ...

  9. Eclipse开启代码自动提示功能

    Eclipse代码里面的代码提示功能默认是关闭的,只有输入“.”的时候才会提示功能,用vs的用户可能不太习惯 这种,vs是输入任何字母都会提示,下面说一下如何修改eclipse配置,开启代码自动提示功 ...

  10. C语言 - typedef struct 与struct

    c语言中可以选择的数据类型太少了. Java中有一些高级的数据结构. 结构中能够存放基本的数据类型以及其他的结构. 结构定义,一般放在程序的开头部分. 一般放在include之后. #include ...