Transfer water

Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)

Total Submission(s): 3775    Accepted Submission(s): 1356
Problem Description
XiaoA lives in a village. Last year flood rained the village. So they decide to move the whole village to the mountain nearby this year. There is no spring in the mountain, so each household could only dig a well or build a water
line from other household. If the household decide to dig a well, the money for the well is the height of their house multiplies X dollar per meter. If the household decide to build a water line from other household, and if the height of which supply water
is not lower than the one which get water, the money of one water line is the Manhattan distance of the two households multiplies Y dollar per meter. Or if the height of which supply water is lower than the one which get water, a water pump is needed except
the water line. Z dollar should be paid for one water pump. In addition,therelation of the households must be considered. Some households may do not allow some other households build a water line from there house. Now given the 3‐dimensional position (a, b,
c) of every household the c of which means height, can you calculate the minimal money the whole village need so that every household has water, or tell the leader if it can’t be done.
 
Input
Multiple cases.

First line of each case contains 4 integers n (1<=n<=1000), the number of the households, X (1<=X<=1000), Y (1<=Y<=1000), Z (1<=Z<=1000).


Each of the next n lines contains 3 integers a, b, c means the position of the i‐th households, none of them will exceeded 1000.


Then next n lines describe the relation between the households. The n+i+1‐th line describes the relation of the i‐th household. The line will begin with an integer k, and the next k integers are the household numbers that can build a water line from the i‐th
household.

If n=X=Y=Z=0, the input ends, and no output for that.
 
Output
One integer in one line for each case, the minimal money the whole village need so that every household has water. If the plan does not exist, print “poor XiaoA” in one line.

 
Sample Input
2 10 20 30
1 3 2
2 4 1
1 2
2 1 2
0 0 0 0
 
Sample Output
30
Hint
In 3‐dimensional space Manhattan distance of point A (x1, y1, z1) and B(x2, y2, z2) is |x2‐x1|+|y2‐y1|+|z2‐z1|.
 
Source
 

题意:给定n个点的三维坐标,以及根节点到每一个点的单向权值。再给定n个节点间相互单向连接的成本,求最小树形图。

题解:水源能够看作从虚拟根节点引出来的。这道题必然有解。由于大不了每一个实际点都跟根节点相连嘛,所以ZL_MST函数里的推断非根无入边节点能够忽略掉。

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
#define maxn 1002
#define maxm 1000002 int X, Y, Z;
struct Node{
int x, y, z;
} ver[maxn];
struct Node2{
int u, v, cost;
} E[maxm];
int in[maxn], hash[maxn], vis[maxn], pre[maxn]; int calDist(Node a, Node b){
return abs(a.x - b.x) + abs(a.y - b.y) + abs(a.z - b.z);
} __int64 ZL_MST(int root, int nv, int ne)
{
__int64 ans = 0;
int u, v, i, cnt;
while(true){
//0.初始化
for(i = 0; i < nv; ++i) in[i] = INT_MAX;
//1.找最小入边集
for(i = 0; i < ne; ++i){
u = E[i].u; v = E[i].v;
if(E[i].cost < in[v] && u != v){
in[v] = E[i].cost; pre[v] = u;
}
}
//2.找非根无入边点(略)。由于必然有解
//3.找环。加权,又一次标号
memset(hash, -1, sizeof(hash));
memset(vis, -1, sizeof(vis));
cnt = in[root] = 0;
for(i = 0; i < nv; ++i){
ans += in[i]; v = i;
while(vis[v] != i && v != root && hash[v] == -1){
vis[v] = i; v = pre[v];
}
if(v != root && hash[v] == -1){
for(u = pre[v]; u != v; u = pre[u])
hash[u] = cnt;
hash[v] = cnt++;
}
}
if(cnt == 0) return ans; //无环,算法完毕
for(i = 0; i < nv; ++i)
if(hash[i] == -1) hash[i] = cnt++;
//4.缩点,遍历每一条边,又一次构图
for(i = 0; i < ne; ++i){
v = E[i].v;
E[i].u = hash[E[i].u];
E[i].v = hash[E[i].v];
if(E[i].u != E[i].v) E[i].cost -= in[v];
}
//顶点数降低
nv = cnt; root = hash[root];
}
return ans;
} int main()
{
int n, i, a, b, id;
while(scanf("%d%d%d%d", &n, &X, &Y, &Z) != EOF && (n||X||Y||Z)){
for(i = 0; i < n; ++i)
scanf("%d%d%d", &ver[i].x, &ver[i].y, &ver[i].z);
for(i = id = 0; i < n; ++i){
scanf("%d", &a);
while(a--){
scanf("%d", &b);
E[id].cost = calDist(ver[i], ver[--b]) * Y;
if(ver[b].z > ver[i].z) E[id].cost += Z;
E[id].u = i; E[id++].v = b;
}
}
for(i = 0; i < n; ++i){
E[id].u = n; E[id].v = i;
E[id++].cost = ver[i].z * X;
}
printf("%I64d\n", ZL_MST(n, n + 1, id));
}
return 0;
}

HDU4009 Transfer water 【最小树形图】的更多相关文章

  1. HDU4009 Transfer water —— 最小树形图 + 不定根 + 超级点

    题目链接:https://vjudge.net/problem/HDU-4009 Transfer water Time Limit: 5000/3000 MS (Java/Others)    Me ...

  2. hdu4009 Transfer water 最小树形图

    每一户人家水的来源有两种打井和从别家接水,每户人家都可能向外输送水. 打井和接水两种的付出代价都接边.设一个超级源点,每家每户打井的代价就是从该点(0)到该户人家(1~n)的边的权值.接水有两种可能, ...

  3. HDU 4009 Transfer water 最小树形图

    分析:建一个远点,往每个点连建井的价值(单向边),其它输水线按照题意建单向边 然后以源点为根的权值最小的有向树就是答案,套最小树形图模板 #include <iostream> #incl ...

  4. HDOJ 4009 Transfer water 最小树形图

    Transfer water Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others) T ...

  5. POJ 3164 Command Network 最小树形图模板

    最小树形图求的是有向图的最小生成树,跟无向图求最小生成树有很大的区别. 步骤大致如下: 1.求除了根节点以外每个节点的最小入边,记录前驱 2.判断除了根节点,是否每个节点都有入边,如果存在没有入边的点 ...

  6. HDU 4009——Transfer water——————【最小树形图、不定根】

    Transfer water Time Limit:3000MS     Memory Limit:65768KB     64bit IO Format:%I64d & %I64u Subm ...

  7. HDU 4009 Transfer water(最小树形图)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4009 题意:给出一个村庄(x,y,z).每个村庄可以挖井或者修建水渠从其他村庄得到水.挖井有一个代价, ...

  8. 最小树形图(hdu4009)

    Transfer water Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others) T ...

  9. HDU4009:Transfer water(有向图的最小生成树)

    Transfer water Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)To ...

随机推荐

  1. BootStrap有用代码片段(持续总结)

    > 如题.持续总结自己在使用BootStrap中遇到的问题.并记录解决方法.希望能帮到须要的小伙伴 1.bootstrap上下布局.顶部固定下部填充 应用场景:经典上下布局中,顶部导航条固定,下 ...

  2. Windows server 2008 布署FTP服务器实例(适用于阿里云)!

    Windows server 2008 布署FTP服务器实例(适用于阿里云). 1.打开管理.配置-用户-新建用户,如:ftp_user,并设置password.选择永只是期和password不能更改 ...

  3. hdoj--1869--六度分离(floyd)

    六度分离 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  4. Asp.Net中使用水晶报表(下)

    Asp.Net中使用水晶报表(下)   使用PUSH模式 我们采用下面的几步使用Push模式执行水晶报表: 1. 设计一个DataSet 2. 创建一个.rpt文件同时将其指定给上一步建立的DataS ...

  5. sql 的几种常用方法

    第一个项目总结基类:database:主要是定义有关数据库的方法: 1.打开数据库 public static void Open() { ( "server=.\\sqlexpress;d ...

  6. 《剑指offer》二叉树的镜像

    一.题目描述 操作给定的二叉树,将其变换为源二叉树的镜像. 二.输入描述 二叉树的镜像定义:源二叉树 8 / \ 6 10 / \ / \ 5 7 9 11 三.输出描述 镜像二叉树 8 / \ 10 ...

  7. vue中Object.defineProperty用法

    function def (obj, key, val, enumerable) { Object.defineProperty(obj, key, { value: val, enumerable: ...

  8. UVa 729 The Hamming Distance Problem【枚举排列】

    题意:给出数组的长度n,给出h,表示这个数组里面含有h个1,求其所有的排列 用next_permutation就可以了 #include<iostream> #include<cst ...

  9. solver及其配置

    solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover ...

  10. bzoj1457: 棋盘游戏 SG函数 Nim

    Code: #include<cstdio> #include<cstring> using namespace std; #define maxn 1003 #define ...