You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk.

Input

Input starts with an integer T (≤ 1000), denoting the number of test cases.

Each case starts with a line containing two integers: n (2 ≤ n < 231) and k (1 ≤ k ≤ 107).

Output

For each case, print the case number and the three leading digits (most significant) and three trailing digits (least significant). You can assume that the input is given such that nk contains at least six digits.

Sample Input

5

123456 1

123456 2

2 31

2 32

29 8751919

Sample Output

Case 1: 123 456

Case 2: 152 936

Case 3: 214 648

Case 4: 429 296

Case 5: 665 669

后三位数字可以通过快速幂取模运算来获得,前三位数字可以通过对数的小数部分来获得!

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 1000010
#define LLL 1000000000
#define INF 1000000009
LL Pow(LL x,LL k)
{
LL ret = ;
while (k)
{
if (k & !=)
ret = (ret*x)%;
x = x*x;
x %= ;
k /= ;
}
return ret;
}
int main()
{
int T;
LL n, k;
cin >> T;
for (int cas = ; cas <= T; cas++)
{
scanf("%lld%lld", &n, &k);
LL tmp = n % ;
LL ans2 = Pow(tmp, k)%,ans1;
double num = k*log10(n*1.0);
num -= LL(num);
ans1 = LL(pow(, num) * );
printf("Case %d: %lld %03lld\n", cas, ans1, ans2);
}
return ;
}

Leading and Trailing的更多相关文章

  1. LightOJ 1282 Leading and Trailing (快数幂 + 数学)

    http://lightoj.com/volume_showproblem.php?problem=1282 Leading and Trailing Time Limit:2000MS     Me ...

  2. 【LightOJ1282】Leading and Trailing(数论)

    [LightOJ1282]Leading and Trailing(数论) 题面 Vjudge 给定两个数n,k 求n^k的前三位和最后三位 题解 这题..真的就是搞笑的 第二问,直接输出快速幂\(m ...

  3. Leading and Trailing (数论)

    Leading and Trailing https://vjudge.net/contest/288520#problem/E You are given two integers: n and k ...

  4. Leading and Trailing(数论/n^k的前三位)题解

    Leading and Trailing You are given two integers: n and k, your task is to find the most significant ...

  5. UVA-11029 Leading and Trailing

    Apart from the novice programmers, all others know that you can’t exactly represent numbers raised t ...

  6. E - Leading and Trailing 求n^k得前三位数字以及后三位数字,保证一定至少存在六位。

    /** 题目:E - Leading and Trailing 链接:https://vjudge.net/contest/154246#problem/E 题意:求n^k得前三位数字以及后三位数字, ...

  7. UVA 11029 || Lightoj 1282 Leading and Trailing 数学

    Leading and Trailing You are given two integers: n and k, your task is to find the most significant ...

  8. LightOJ1282 Leading and Trailing —— 指数转对数

    题目链接:https://vjudge.net/problem/LightOJ-1282 1282 - Leading and Trailing    PDF (English) Statistics ...

  9. Leading and Trailing LightOJ - 1282 题解

    LightOJ - 1282 Leading and Trailing 题解 纵有疾风起 题目大意 题意:给你一个数n,让你求这个数的k次方的前三位和最后三位. \(2<=n<2^{31} ...

  10. 1282 - Leading and Trailing 求n^k的前三位和后三位。

    1282 - Leading and Trailing You are given two integers: n and k, your task is to find the most signi ...

随机推荐

  1. (转)dp动态规划分类详解

    dp动态规划分类详解 转自:http://blog.csdn.NET/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间 ...

  2. 支撑百亿级应用的 NewSQL

    支撑百亿级应用的 NewSQL https://zhuanlan.zhihu.com/newsql/ 项目背景 初次接触 TiDB,是通过同程网首席架构师王晓波先生的分享,当时同程网正在使开发和数据库 ...

  3. 曼哈顿距离 C++

    template <class T1, class T2>double ManhattanDistance(std::vector<T1> &inst1, std::v ...

  4. 希尔shell排序——java实现

    希尔排序是对插入排序的优化,将插入排序的交换步长由1增加到h. 希尔排序的思想是使数组中任意间隔为h的元素有序.步长调幅为h = 3*h + 1, 也就是1,4,13,40,121,364, 1003 ...

  5. sklearn中的数据预处理和特征工程

    小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...

  6. “阻塞”与"非阻塞"与"同步"与“异步"

    链接:http://www.zhihu.com/question/19732473/answer/20851256来源:知乎 “阻塞”与"非阻塞"与"同步"与“ ...

  7. 全文检索引擎及工具 Lucene Solr

    全文检索引擎及工具 lucence lucence是一个全文检索引擎. lucence代码级别的使用步骤大致如下: 创建文档(org.apache.lucene.document.Document), ...

  8. 黑客常用dos命令

    http://blog.csdn.net/CSDN___LYY/article/details/77802438

  9. ROS:使用ubuntuKylin17.04安装ROS赤xi龟

    使用ubuntuKylin17.04安装 参考了此篇文章:SLAM: Ubuntu16.04安装ROS-kinetic 重复官方链接的步骤也没有成功. 此后发现4.10的内核,不能使用Kinetic. ...

  10. ANN:DNN结构演进History—LSTM网络

    为了保持文章系列的连贯性,参考这个文章: DNN结构演进History-LSTM_NN 对于LSTM的使用:谷歌语音转录背后的神经网络 摘要: LSTM使用一个控制门控制参数是否进行梯度计算,以此避免 ...