题目:

GCD Again

Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 125 Accepted Submission(s): 84
 
Problem Description
Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
No?

Oh, you must do this when you want to become a "Big Cattle".
Now you will find that this problem is so familiar:
The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
Good Luck!

 
Input
Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
 
Output
            For each integers N you should output the number of integers M in one line, and with one line of output for each line in input.
 
Sample Input
2
4
0
 
Sample Output
0
1
 
Author
lcy
 
Source
2007省赛集训队练习赛(10)_以此感谢DOOMIII
 
Recommend
lcy
 

题目分析:

欧拉函数的简单应用。本体先使用phi(n)求出[1,n]中与n互质的元素的个数,然后再使用n-phi(n)求出[1,n]中与

n不互质的元素的个数就可以。最后还须要把它自己给减掉。也就是n-phi(n)-1.

这道题须要的须要注意的是:

1、在这里,我们还回想一下"互质"的定义:

互质,公约数仅仅有1的两个整数,叫做互质整数·公约数仅仅有1的两个自然数,叫做互质自然数,后者是前者的特殊情形·。

2、关于使用预处理的方式来求欧拉值  和  使用phi(n)来求欧拉值得两种方式的选择的个人考虑:

1)当n比較小 。同一个输入例子须要多次用到phi[i]时,这时能够考虑使用预处理的方式。假设当n比較大的时候仍使用这样的方式,非常可能会直接MLE,如这道题。

2)当n比較大,同一个输入例子仅仅须要使用一个phi[i]时,这是我们能够考虑使用调用phi(i)的方式。

代码例如以下:

#include <iostream>
#include <stdio.h>
#include <string>
#include <cmath>
#include <algorithm>
using namespace std; typedef unsigned long long int longint; longint phi(longint num) {
longint sum = 1;
for (long int i = 2; i <= sqrt((double long) num); i++) {
if (num % i == 0) {
while (num % i == 0) {
sum *= i;
num /= i;
}
sum /= i;
sum *= (i - 1);
}
} if (num != 1) {
sum *= (num - 1);
} return sum;
} int main(){
int n;
while(scanf("%d",&n)!=EOF,n){
/**
* 最后为什么要减1呢?
* 由于这道题要求的是[1,n)中与n不互质的元素的个数,
* 须要把n自己给减掉.
*/
printf("%lld\n",n - phi(n) - 1);
} return 0;
}

(hdu step 7.2.2)GCD Again(欧拉函数的简单应用——求[1,n)中与n不互质的元素的个数)的更多相关文章

  1. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  2. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  3. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  4. HDU 2588 GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  5. HDU1695 GCD (欧拉函数+容斥原理)

    F - GCD Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  6. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. HDU 1787 GCD Again(欧拉函数,水题)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  8. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  9. 题解报告:hdu 2588 GCD(欧拉函数)

    Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ...

随机推荐

  1. hdu 5823 color II —— 子集DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5823 看博客:http://www.cnblogs.com/SilverNebula/p/5929550. ...

  2. Redis 链表结构 和 常用命令

    Redis 数据结构 --链表(linked-list) 命令 说明 备注 lpush key node1 [node2 ...] 把节点 node1 加入到 链表最左边 如果是 node1.node ...

  3. usaco 过路费 Cow Toll Paths, 2009 Dec

    Description 翰家有 N 片草地,编号为 1 到 N ,彼此之间由 M 条双向道路连接,第 i 条道路连接了 Ai 和Bi,两片草地之间可能有多条道路,但没有道路会连接同一片草地,现有的道路 ...

  4. SEO之如何做301转向

    1.如果网站使用的是(Linux+Apache+MySQL+PHP)主机,可以使用.htaccess文件做301转向 比如把/index.html 301转向到http://www.xinlvtian ...

  5. Android HTTP下载文件并保存到本地或SD卡

    想把文件保存到SD卡中,一定要知道SD卡的路径,获取SD卡路径: Environment.getExternalStorageDirectory() 另外,在保存之前要判断SD卡是否已经安装好,并且可 ...

  6. VMware中linux安装jdk

    首先安装linux系统 如何将jdk安装包复制到linux中不做概述,可以使用xftp工具,或者Xshell,或者其他方式. 1.下载jdk包:本章使用的为后缀为tar.gz的文件(不需要安装),如j ...

  7. easyui combobox的增加全选解决方案

      1.解决方案背景: 项目中偶然需要用到easyui的combobox的组件,但是本组件自己没有包含全选的api事件.搜索了一些解决方案,但是不是很符合,后来发现是因为所使用的版本不一致所导致的.项 ...

  8. halcon 模板匹配 -- create_shape_model

    create_shape_model(Template : : //reduce_domain后的模板图像 NumLevels,//金字塔的层数,可设为“auto”或0—10的整数 AngleStar ...

  9. ROS:Nvidia Jetson TK1开发平台

    原文链接: http://wiki.ros.org/NvidiaJetsonTK1 1. Nvidia Jetson TK1 Jetson TK1 comes pre-installed with L ...

  10. SLAM:(编译ORB)fatal error LNK1181: 无法打开输入文件“libboost_mpi-vc110-mt-1_57.lib”

    对于使用MD版本编译的ORB_SLAM,会用到MPI版本的Boost,需要自己编译,比较麻烦. 因此使用MT版本进行生成,暂时无法完成. 工程配置 发现添加库文件使用了:从父级或项目默认继承,默认包含 ...