[读书笔记] R语言实战 (五) 高级数据管理
1. 数值函数
1) 数学函数
2) 统计函数
3. 数据标准化
scale() 函数对矩阵或者数据框的指定列进行均值为0,标准化为1的标准化
mydata <- data.frame(c1=c(1,2,3),c2=c(4,5,6),c3=c(7,8,9))
#对所有列进行标准化
mydata <- scale(mydata)
#对指定列进行标准化
mydata <- data.frame(c1=c(1,2,3),c2=c(4,5,6),c3=c(7,8,9))
mydata <- transform(mydata,c1 = scale(c1))
4. 概率函数
设定随机数种子:每次生成随机数的时候函数都会使用不同的种子,因此也会有不同的结果,可以通过set.seed()显示指定种子,让结果可以重现。
runif() 函数用来生成0到1区间上服从均匀分布的伪随机数
runif(5)
runif(5)
set.seed(1234)
runif(5)
set.seed(1234)
runif(5)
5. 字符处理函数
apply 函数 可以将任意一个函数应用到矩阵数组,数据框的任何维度上:
apply(x, MARGIN, FUN, ... )
mydata <- matrix(rnorm(30),nrow=6)
mydata
#计算每行的均值
apply(mydata,1,mean)
#计算每列的均值
apply(mydata,2,mean)
一个综合的例子
#限定输出小数点后两位
options(digits=2)
Student <-c("Jhon Davis","Angela Williams","Bullwinkle None",
"David Jones","Janice Markhammer","Chervl Cushing",
"Reuven Ytzrhak","Greg Knox","Joel England","Mary Rayburn")
Math <- c(502,600,412,358,495,512,410,625,573,522)
Science <- c(95,99,80,82,75,85,80,95,89,86)
English <- c(25,22,18,15,20,28,15,30,27,18)
roster <- data.frame(Student,Math,Science,English,stringsAsFactors = FALSE)
#将数学,科学,英语分数标准化,便于比较
z <- scale(roster[,2:4])
#计算行均值,每一个人的平均分
score <- apply(z,1,mean)
#将平均分
roster <- cbind(roster,score)
#计算80%,60%,40%,20%分位线
y <- quantile(score,c(.8,.6,.4,.2))
roster$grade[score>=y[1]]<-'A'
roster$grade[score<y[1] & score>=y[2]]<-'B'
roster$grade[score<y[2] & score>=y[3]]<-'C'
roster$grade[score<y[3] & score>=y[4]]<-'D'
roster$grade[score<y[4]]<-'F'
#将姓,名分开
name <- strsplit(roster$Student," ")
#抽取姓和名,'['提取对象一部分的函数
firstname <- sapply(name,"[",2)
lastname <- sapply(name,"[",1)
#将第一列剔除(下标使用-1),列拼接名和姓
roster <-cbind(firstname,lastname,roster[,-1])
roster <- roster[order(lastname,firstname),]
roster
6. 控制流
1) for 循环:for (var in seq) statement
2) while循环: while(cond) statement
3) 条件 if-else ifelse switch
7. 用户自编函数
mystats <- function(x, parametric=TRUE, print=FALSE){
if(parametric){
#计算均值和标准差
center <- mean(x); spread <- sd(x)
}else
{
#中位数和绝对中位差
center <- median(x);spread <- mad(x)
}
if (print & parametric){
cat("Mean=",center,"\n","MAD=",spread,"\n")
}
result <- list(center=center,spread=spread)
return(result)
}
set.seed(1234)
#生成服从正态分布,大小为500的样本
x <- rnorm(500)
y <- mystats(x,print=TRUE)
8. 重构与整合
1) 矩阵转置 t()
2) aggregate() 函数, aggregate(x,by,FUN), x 是待折叠的数据对象, by 是变量名组成的列表,这些变量被去掉形成新的观测,FUN,生成描述性统计量的标量函数,用来计算新观测中的值
by中的变量必须在一个列表中
options(digits=3)
attach(mtcars)
#按照cly 和 gear分类形成新的观测
aggdata <- aggregate(mtcars, by=list(Group.cyl=cyl,Group.gear=gear),FUN=mean,na.rm=TRUE)
detach(mtcars)
3) reshape包
先对数据进行融合melt():每个观测变量单独占一行,行中有唯一确定这个测量需要的标识符变量
在对数据进行重铸cast():读取已经融合的数据,使用你提供的公式和一个可选的用于整合数据的函数将其重塑
#载入reshape包
library(reshape)
#创建数据框
mydata <- data.frame(ID = c(1,1,2,2),Time = c(1,2,1,2),X1 = c(5,3,6,2),X2 = c(6,5,1,4))
#以ID和Time为标识融合数据
md <- melt(mydata,id=(c("ID","Time")))
#以ID为标识对变量求均值,可以看到ID为1的X1均值为4,X2均值为5.5
cast(md,ID~variable,mean)
#对不同ID和Time下的观测变量X进行平均
cast(md,ID~Time,mean)
[读书笔记] R语言实战 (五) 高级数据管理的更多相关文章
- [读书笔记] R语言实战 (一) R语言介绍
典型数据分析的步骤: R语言:为统计计算和绘图而生的语言和环境 数据分析:统计学,机器学习 R的使用 1. 区分大小写的解释型语言 2. R语句赋值:<- 3. R注释: # 4. 创建向量 c ...
- [读书笔记] R语言实战 (四) 基本数据管理
1. 创建新的变量 mydata<-data.frame(x1=c(2,2,6,4),x2=c(3,4,2,8)) #方法一 mydata$sumx<-mydata$x1+mydata$x ...
- [读书笔记] R语言实战 (二) 创建数据集
R中的数据结构:标量,向量,数组,数据框,列表 1. 向量:储存数值型,字符型,或者逻辑型数据的一维数组,用c()创建 ** R中没有标量,标量以单元素向量的形式出现 2. 矩阵:二维数组,和向量一 ...
- [读书笔记] R语言实战 (六) 基本图形方法
1. 条形图 barplot() #载入vcd包 library(vcd) #table函数提取各个维度计数 counts <- table(Arthritis$Improved) count ...
- [读书笔记] R语言实战 (十四) 主成分和因子分析
主成分分析和探索性因子分析是用来探索和简化多变量复杂关系的常用方法,能解决信息过度复杂的多变量数据问题. 主成分分析PCA:一种数据降维技巧,将大量相关变量转化为一组很少的不相关变量,这些无关变量称为 ...
- [读书笔记] R语言实战 (三) 图形初阶
创建图形,保存图形,修改特征:标题,坐标轴,标签,颜色,线条,符号,文本标注. 1. 一个简单的例子 #输出到图形到pdf文件 pdf("mygrapg.pdf") attach( ...
- [读书笔记] R语言实战 (十三) 广义线性模型
广义线性模型扩展了线性模型的框架,它包含了非正态的因变量分析 广义线性模型拟合形式: $$g(\mu_\lambda) = \beta_0 + \sum_{j=1}^m\beta_jX_j$$ $g( ...
- 《R语言实战》读书笔记--为什么要学
本人最近在某咨询公司实习,涉及到了一些数据分析的工作,用的是R语言来处理数据.但是在应用的过程中,发现用R很不熟练,所以再打算学一遍R.曾经花一个月的时间看过一遍<R语言编程艺术>,还用R ...
- R语言实战(第二版)-part 1笔记
说明: 1.本笔记对<R语言实战>一书有选择性的进行记录,仅用于个人的查漏补缺 2.将完全掌握的以及无实战需求的知识点略去 3.代码直接在Rsudio中运行学习 R语言实战(第二版) pa ...
随机推荐
- [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- qt4.7.0 交叉编译环境搭建经验总结
一.前期软件准备: 1 .虚拟机fedora9.到fedora官网下载,地址 http://fedoraproject.org/ 版本推荐使用fedora9,在vm内安装,并且不安装vmware ...
- 《代码敲不队》第八次团队作业:Alpha冲刺 第二天
项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 代码敲不队 作业学习目标 掌握软件编码实现的工程要求. 团队项目github仓库地址链接 GitH ...
- 《代码敲不队》第八次团队作业:Alpha冲刺 第三天
项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 代码敲不队 作业学习目标 掌握软件编码实现的工程要求. 团队项目github仓库地址链接 GitH ...
- 关于python从Oracle中读取数据中文全是问号的问题
import os os.environ['NLS_LANG'] = 'SIMPLIFIED CHINESE_CHINA.UTF8' 问题搞定
- FreeMarker 语法 date 类型处理
一.java 代码 @Test public void testFreeMarker() throws Exception { //1.创建一个模板文件 //2.创建一个Configuration对象 ...
- C#中的CollectionBase用法
ColectionBase中有List方法,返回的是类本身 class A :CollectionBase { public void add(B b) { List.Add(b); } public ...
- 洛谷—— P3353 在你窗外闪耀的星星
https://www.luogu.org/problem/show?pid=3353 题目描述 飞逝的的时光不会模糊我对你的记忆.难以相信从我第一次见到你以来已经过去了3年.我仍然还生动地记得,3年 ...
- CF864A Fair Game
CF864A Fair Game 题意翻译 CF864A Fair Game 题意: Petya和Vasya决定玩一个游戏,他们有偶数张卡片,每张卡片上一个数字.每人选择一个数字(两个人选择的数字不能 ...
- [SharePoint][SharePoint Designer 入门经典]Chapter8 XSLT数据试图和表单
本章概要: 1.不是利用XSLT web部件 2.使用XSLT web部件创建数据试图 3.使用XSLT表单web部件创建自定义表单 4.利用自定义动作执行列表表单