结合Wireshark捕获分组深入理解TCP/IP协议之IP协议
摘要:
本文简单介绍了网络层理论知识,详细讲解了IP数据报各个字段,并从Wireshark俘获分组中选取IP数据报进行分析,也阐述了分组和分片的区别。
一、IPv4数据报
网络层是处理端到端数据传输的最低层。网络层关注如何将分组从源端沿着网络路径送达目的端,期间可能需要经过许多跳中间路由器。即提供转发(数据从路由器那个接口出去)、选路(发送方与接收方间的路径)、网络建立(如ATM、帧中继)。这里以IPv4为例,关于IPv6报文格式详见博文《IPv4与IPv6数据报格式详解》。
图1 IPv4数据报格式
版本号(version)
不同的IP协议版本使用不同的数据报格式。
首部长度(HL, Internet Head Length)
确定IP数据报中数据部分实际从哪里开始,包含可变数量的选项。若IP数据报没有包含选项,则IP数据报首部长度为20字节。
服务类型(TOS, Type Of Service)
更好地服务不同类型IP数据报(如实时数据报IP电话应用、非实时通信流FTP),Cisco将TOS前3位标识不同服务等级,即优先级。
数据报长度(TL, Total Length)
IP数据报长度,即首部+数据。
分片:标识(identification)、标志(flags)、段位移(Fragment Offset)
这3个字段跟IP分片有关,当目的主机从同一个源收到一批数据报时,需要确定这些数据报是完整数据报还是分片后的数据报,数据报首部标识字段解决这个问题,检查数据报的标识号确定哪些数据报真正是同一个较大数据报的片;如何判断最后一个分片已收到,数据报首部标志字段解决这个问题,将最后一片的标志为0,其他标记为1;如何顺序重组这些片,这就需要记录每个片的在数据报有效净荷的偏移量,这也确定了片是否丢失。若丢失某些片,则丢弃这个不完整的数据报(不会交给传输层)。需要可靠传输怎么办呢,由传输层让源重传原始数据摄中的数据(如TCP)。
寿命(TTL, Time To Live)
每次数据报经过一台路由器时,该字段的值减1,若TTL字段减为0,则丢弃该数据报,从而确保数据报不会永远在网络循环。
上层协议(Protocol)
该字段用于指明IP数据报的数据部分应该交给哪个传输层协议(6为TCP、17为UDP)。
首部检查和(Header Checksum)
只是对IP首部进行检验,对整个TCP/UDP报文段检验交由TCP/UDP完成。将首部中的每两个字节当作一个数,用反码运算对这些数求和,该和按1补码值存放在检查和字段。当路由器收到IP数据报时,计算其首部检查和,与该字段值比较,若出错则丢弃该数据报。
注:因为TTL字段及选项字段可能改变,所以每个路由器上的检查和都须重新计算并存放在原处。(检查后,再更新)
源和目的IP地址(Source/Destination Address)
选项(Options)
选项字段允许IP首部被扩展,由此导致数据报首部长度可变,故不能预先确定数据字段从何开始,同时也使路由器处理一个IP数据报所需时间差异很大(有的要处理选项,有的不需要)。
数据(Data)
当使用TCP/UDP协议时,数据即为传输层报文段(TCP/UDP)。数据字段也可承载其他类型数据,如ICMP报文段。
二、实例解析
以请求百度首页基本HTML为例,因HTTP报文太大(3835字节),网络层对其进行分片,共4片,如下图(截自Wireshark俘获的HTTP响应报文):
图2 数据分片实例
整个HTTP报文传输示意图如下:
图3 HTTP报文传输实例示意图
2.1 分片
IP数据报首部字段的标识(identification)、标志(flags)、段位移(Fragment Offset) 用来处理分片。当目的主机从同一个源收到一批数据报时,需要确定这些数据报是完整数据报还是分片后的数据报,数据报首部标识字段解决这个问题,检查数据报的标识号确定哪些数据报真正是同一个较大数据报的片;如何判断最后一个分片已收到,数据报首部标志字段解决这个问题,将最后一片的标志为0,其他标记为1;如何顺序重组这些片,这就需要记录每个片的在数据报有效净荷的偏移量,这也确定了片是否丢失。若丢失某些片,则丢弃这个不完整的数据报(不会交给传输层)。需要可靠传输怎么办呢,由传输层让源重传原始数据摄中的数据(如TCP)。
将该4个IP数据报(组成该完整的HTTP报文)的标识、标志、段位移部分抽出来,如下图所示:
图4 HTTP响应报文的4个IP数据报
可以看出,IP数据报并没有分片,这是因为这些IP数据报封装成帧并没有超过MTU(以太网MTU为1500字节)。蛮想找一个有分片的IP数据报分析下,可惜俘获的分组没有:-(
不尽要问,当报文太大时,什么时候划分报文呢?主要是在两个地方:传输层TCP分组、网络层IP分片。
(1)分组
TCP把应用程序交给它的报文分成合适的小块交给下面网络层,要不要分取决于应用层报文是否大于MSS(想想TCP连接建立时最大报文段MSS大小的协商,注MSS仅包含TCP报文段的净荷数据,不包括TCP首部),怎么分取决于特定的分组算法。本例将3836字节长度HTTP报文分成:411+1440+1440+545。
(2)分片
IP数据报在发送方与目的地间传输可能选择不同的路径,路径上的每段链路可能使用不同的链路层协议,协议可能具有不同的最大传输单(MTU,链路层数据报能承载的最大数据量)。当出链路的MTU比IP数据报的长度小时,需要将过大的IP数据报分片。IPv4数据报首部字段标识、标志、偏移量解决这个问题。
值得注意的是,IP数据报分片在网络层重组,重组好了,再交给传输层。TCP报文段在传输层重组,重组好了,再交给应用层。
2.2 IP数据报实例
接下来,取一个完整IP数据报分析(以第一个数据报为例,即27),如下:
图4 IP数据报实例
IP数据报首部没有选项字段,长度为20字节,数据报长度451=IP数据报首部长度20(没有选项字段)+TCP首部长度20(没有选项字段)+TCP报文段的数据字段411(实为HTTP报文前411字节)。
参考资料:
[1] Andrew S.Tanenbaum.计算机网络[M].
[2] 《计算机网络--自顶向下方法与Internet特色》[M].
from:http://blog.chinaunix.net/uid-9112803-id-3213492.html
结合Wireshark捕获分组深入理解TCP/IP协议之IP协议的更多相关文章
- 结合Wireshark捕获分组深入理解TCP/IP协议栈
摘要: 本文剖析了浏览器输入URL到整个页面显示的整个过程,以百度首页为例,结合Wireshark俘获分组进行详细分析整个过程,从而更好地了解TCP/IP协议栈. 一.俘获分组 1.1 准 ...
- 结合Wireshark捕获分组深入理解TCP/IP协议栈之TCP协议(TCP报文格式+三次握手实例)
摘要: 本文简单介绍了TCP面向连接理论知识,详细讲述了TCP报文各个字段含义,并从Wireshark俘获分组中选取TCP连接建立相关报文段进行分析. 一.概述 TCP是面向连接的可靠 ...
- 结合Wireshark捕获分组深入理解TCP/IP协议栈之DNS协议
摘要: 本文简单介绍了DNS协议理论知识,给出URL解析步骤,详细讲述了DNS报文各个字段含义,并从Wireshark俘获分组中选取DNS相关报文进行分析. 一.概述 1.1 DNS ...
- 结合Wireshark捕获分组深入理解TCP/IP协议之以太网帧
摘要: 本文摘抄并整理了以太网相关理论知识,包括CSMA/CD协议机制及工作.LAN互连,详细分析了Ethernet II帧格式,最后给出Ethernet II帧实例. 一.以太网[1] 1. ...
- 结合Wireshark捕获分组深入理解TCP/IP协议栈之HTTP协议
摘要: 本文简单介绍了Web应用层协议理论知识,详细讲述了HTTP请求报文和响应报文各个字段含义,并从Wireshark俘获分组中选取HTTP相关报文进行分析. 一.概述 Web的应用 ...
- 如何理解TCP的三次握手协议?
• TCP是一个面向链接的协议,任何一个面向连接的协议,我们都可以将其类比为我们最熟悉的打电话模型. 如何类比呢?我们可以从建立和销毁两个阶段分别来看这件事情. 建立连接阶段 首先,我们来看看TCP中 ...
- Wireshark 捕获过滤器的语法
转自:http://blog.csdn.net/qq_29277155/article/details/52077239 前言 我们都知道,wireshark可以实现本地抓包,同时Wireshark也 ...
- 面试热点|理解TCP/IP传输层拥塞控制算法
0x00.前言 通过本文你将了解到以下内容: 拥塞控制概念以及其背景 流量控制和拥塞控制的区别与联系 拥塞控制主要过程详解 伙伴们认真学习一下,让offer来得更猛烈些吧! 0x01.TCP/IP协议 ...
- 【PHPsocket编程专题(理论篇)】初步理解TCP/IP、Http、Socket.md
前言 我们平时说的最多的socket是什么呢,实际上socket是对TCP/IP协议的封装,Socket本身并不是协议,而是一个调用接口(API).那TCP/IP又是什么呢?TCP/IP是ISO/OS ...
随机推荐
- OpenCV —— 图像局部与部分分割(一)
背景减除 一旦背景模型建立,将背景模型和当前的图像进行比较,然后减去这些已知的背景信息,则剩下的目标物大致就是所求的前景目标了 缺点 —— 该方法基于一个不长成立的假设:所有像素点是独立的 场景建模 ...
- 小程序block总结
小程序block总结 1.block并不是一个组件,它仅仅是一个包装元素,不会在页面中做任何渲染,只接受控制属性. 2.因为 wx:if 是一个控制属性,需要将它添加到一个标签上.如果要一次性判断多个 ...
- 如何优雅的写UI——(4)选项卡美化
现在做出来的选项卡实在太丑的,咱们怎么把他弄得好看一点呢 tabctrl是可以添加icon图标的,那派生与tabctrl的mfctabctrl肯定也能添加图标,他们两个添加图标的原理一样,但是还是有点 ...
- IOS经常使用的性能优化策略
1.用ARC管理内存 2.对于UITableView使用重用机制 3.UIView及其子类设置opaque=true 4.主进程是用来绘制UI的,所以不要堵塞 5.慎用XIB,由于XIB创建UIVie ...
- Android实战简易教程-第二十五枪(基于Baas的数据表查询下拉刷新和上拉载入实现!)
上一节我们实现了数据表的载入,可是,当数据表数据非常多时.我们就要考虑数据的分页.这里我们选用了PullToRefreshListView控件,先看一下该控件的说明: 效果图: ...
- Onvif开发之Linux下gsoap的使用及移植
一直以来都是在CSDN上面学习别人的东西,很多次想写点什么但是又无从写起.由于公司项目需要,最近一段时间在研究onvif,在网上找了很多资料,发现资料是非常多,但是很少有比较全的资料,或者资料太多无从 ...
- 数据库中解析XML
简介:OPENXML方法使用一例实现导入功能 DECLARE @strProjGUID AS VARCHAR(50) DECLARE @strProjCode AS VARCHAR(50) DEC ...
- cc1.exe -fno-stack-protector
# github.com/mattn/go-sqlite3 cc1.exe: error: unrecognized command line option "-fno-stack-prot ...
- Django路由分配以及模版渲染
路由上: 在网络上区分不同的电脑通过IP.端口和网卡的MAC地址等,在web框架中怎么区分不同的请求呢,就是通过 ‘url(路由)’ ,url 学名叫做全球统一资源定位符,其实就是一个网址 一个url ...
- 七、Docker+nginx
原文:七.Docker+nginx docker run -p 80:80 --name nginx-v1.0.0 -v /usr/nginx/www:/www -v /home/docker/ngi ...