洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
题目描述
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
输入输出格式
输入格式:
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
输出格式:
共n行,每行一个整数表示满足要求的数对(x,y)的个数
输入输出样例
说明
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
莫比乌斯反演
首先你要会求$\sum ^{n}_{i=1}\sum ^{m}_{i=1}\left[ \gcd \left( i,j\right) = 1\right]$
然后不难发现这题可以容斥处理
假设$work(i,j)=\sum ^{n}_{i=1}\sum ^{m}_{i=1}\left[ \gcd \left( i,j\right) = 1\right]$
那么$ans=work(b,d)-work(a-1,d)-work(c-1,b)+work(a-1,c-1)$
// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN=1e6+;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int N,a,b,c,d,k,ans;
int vis[MAXN],prime[MAXN],mu[MAXN],tot=;
void GetMu()
{
vis[]=;mu[]=;
for(int i=;i<=N;i++)
{
if(!vis[i]) prime[++tot]=i,mu[i]=-;
for(int j=;j<=tot&&i*prime[j]<=N;j++)
{
vis[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else mu[i*prime[j]]=-mu[i];
}
} for(int i=;i<=N;i++)
mu[i]+=mu[i-];
}
int work(int n,int m)
{
int limit=min(n/k,m/k),ans=;
for(int i=,nxt;i<=limit;i=nxt+)
{
nxt=min(n/(n/i),m/(m/i));
ans+=(mu[nxt]-mu[i-])*(n/(k*i))*(m/(k*i));
}
return ans;
}
main()
{
N=1e5;
GetMu();
int QWQ=read();
while(QWQ--)
{
a=read(),b=read(),c=read(),d=read(),k=read();
ans=work(b,d)-work(a-,d)-work(c-,b)+work(a-,c-);
printf("%d\n",ans);
}
return ;
}
洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)的更多相关文章
- P2522 [HAOI2011]Problem b (莫比乌斯反演)
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...
- 洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)
题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Qu ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
传送门 我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Quer ...
- 洛谷 P2522 [HAOI2011]Problem b (莫比乌斯反演+简单容斥)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- 洛谷P2522 - [HAOI2011]Problem b
Portal Description 进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)和\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1} ...
- Luogu P2522 [HAOI2011]Problem b 莫比乌斯反演
设$f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)==d],\\F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lflo ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][ ...
随机推荐
- 深入理解DIP、IoC、DI以及IoC容器(转载)
<转载的这个up的其他的文章也很nice> 这几个词第一眼看,懵逼,第二眼看,更特么懵逼..... 面向对象设计(OOD)有助于我们开发出高性能.易扩展以及易复用的程序. 其中,OOD有一 ...
- FastFDS常用命令
1.启停fastdfs相关服务 #start fastdfs 启动服务 /usr/bin/fdfs_trackerd /etc/fdfs/tracker.conf restart /usr/loca ...
- 铁大FaceBook的使用体验
铁大FaceBook是一个类似QQ和微信等聊天程序的缩小版网站,并且其针对领域较为狭窄:即只针对校园的学生和导员等人员.但其有值得推广的潜力性和可能性. 对于使用它的体验:第一点我感觉这个网站的界面很 ...
- Codeforces Round #471 (Div. 2)B. Not simply beatiful strings
Let's call a string adorable if its letters can be realigned in such a way that they form two conseq ...
- 漫谈 Google 的 Native Client(NaCl) 技术(二)---- 技术篇(兼谈 LLVM)
转自:http://hzx5.blog.163.com/blog/static/40744388201172531637729/ 漫谈 Google 的 Native Client(NaCl) 技术( ...
- 在 CentOS7 上配置 nginx 虚拟主机
创建配置文件保存目录,其中 sites-available 用来实际保存配置文件,sites-enabled 用来保存符号链接 : mkdir /etc/nginx/sites-available m ...
- eclipse迅速新建main函数
创建类的时候勾选 或者在类的下面敲main,然后alt+/ 就可以了
- 【CodeForces 574B】Bear and Three Musketeers
[链接] 我是链接,点我呀:) [题意] [题解] 枚举每一条边(x,y) 然后再枚举y的出度z 看看g[x][z]是否等于1(表示联通) 如果等于1就说明找到了一个三元环,则尝试用它们的出度和-6更 ...
- mybatis入门截图总结
原生态jdbc存在的问题 ------------------- ----------------------- ------- 环境的搭建 ----------------------------- ...
- BIO、NIO、AIO
一.基础概念 IO操作分为两步:1.发起IO请求:2.执行具体IO操作: 同步和异步的区别是数据访问时进程是否阻塞或者说在执行真正IO操作时,数据能够立即返回就是异步,否则就是同步,同步和异步发生在I ...