The Basics of Numpy
在python语言中,Tensorflow中的tensor返回的是numpy ndarray对象。
Numpy的主要对象是齐次多维数组,即一个元素表(通常是数字),所有的元素具有相同类型,可以通过有序整数列表元组tuple访问其元素。In Numpy, dimensions are called axes. The number of axes is rank.
Numpy的数组类为ndarray,它还有一个名气甚大的别名array。需要注意的是:numpy.array与python标准库中的array.array并不完全相同,后者仅仅处理一维数组而且提供的函数功能较少。
比较重要的一些ndarray数组的属性:
ndarray.ndim: the number of axes (dimensions) of the array. In the Python world, the number of dimensions is referred to as rank.ndarray.shape:the dimensions of the array. This is a tuple of integers indicating the size of the array in each dimension. For a matrix with n rows and m columns, shape will be(n,m). The length of the shape tuple is therefore the rank, or number of dimensions, ndim.ndarray.size:the total number of elements of the array. This is equal to the product of the elements of shape.ndarray.dtype:an object describing the type of the elements in the array. One can create or specify dtype’s using standard Python types. Additionally NumPy provides types of its own.numpy.int32,numpy.int16, andnumpy.float64are some examples.ndarray.itemsize:the size in bytes of each element of the array. For example, an array of elements of type float64 has itemsize 8 (=64/8), while one of type complex32 has itemsize 4 (=32/8). It is equivalent to ndarray.dtype.itemsize.ndarray.data:the buffer containing the actual elements of the array. Normally, we won’t need to use this attribute because we will access the elements in an array using indexing facilities.
An Example
import numpy as np
a = np.arange(15).reshape(3, 5)
print a
print a.ndim
print a.shape
print a.size
print a.dtype
print a.itemsize
# print
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
2
(3, 5)
15
int64
8
Array Creation:
>>> a = np.array(1,2,3,4) # WRONG
>>> a = np.array([1,2,3,4]) # RIGHT
>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5, 2. , 3. ],
[ 4. , 5. , 6. ]])
>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j, 2.+0.j],
[ 3.+0.j, 4.+0.j]])
>>> np.zeros( (3,4) )
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
>>> np.ones( (2,3,4), dtype=np.int16 ) # dtype can also be specified
array([[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]],
[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) ) # uninitialized, output may vary
array([[ 3.73603959e-262, 6.02658058e-154, 6.55490914e-260],
[ 5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])
Basic Operations
>>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False], dtype=bool)
>>> A = np.array( [[1,1],
... [0,1]] )
>>> B = np.array( [[2,0],
... [3,4]] )
>>> A*B # elementwise product
array([[2, 0],
[0, 4]])
>>> A.dot(B) # matrix product
array([[5, 4],
[3, 4]])
>>> np.dot(A, B) # another matrix product
array([[5, 4],
[3, 4]])
>>> a = np.ones((2,3), dtype=int)
>>> b = np.random.random((2,3))
>>> a *= 3
>>> a
array([[3, 3, 3],
[3, 3, 3]])
>>> b += a
>>> b
array([[ 3.417022 , 3.72032449, 3.00011437],
[ 3.30233257, 3.14675589, 3.09233859]])
>>> a += b # b is not automatically converted to integer type
# Traceback (most recent call last):
# ...
# TypeError: Cannot cast ufunc add output from dtype('float64') to dtype('int64') with casting rule 'same_kind'
更多内容请阅读:https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
The Basics of Numpy的更多相关文章
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 3、Python Basics with numpy (optional)
Python Basics with numpy (optional)Welcome to your first (Optional) programming exercise of the deep ...
- Python Basics with numpy (optional)
Python Basics with Numpy (optional assignment) Welcome to your first assignment. This exercise gives ...
- Python Basics with Numpy
Welcome to your first assignment. This exercise gives you a brief introduction to Python. Even if yo ...
- PyTorch(一)Basics
PyTorch Basics import torch import torchvision import torch.nn as nn import numpy as np import torch ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...
- 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...
- 【Python】numpy 数组拼接、分割
摘自https://docs.scipy.org 1.The Basics 1.1 numpy 数组基础 NumPy’s array class is called ndarray. ndarray. ...
- numpy基本用法
numpy 简介 numpy的存在使得python拥有强大的矩阵计算能力,不亚于matlab. 官方文档(https://docs.scipy.org/doc/numpy-dev/user/quick ...
- numpy快速指南
Quickstart tutorial 引用https://docs.scipy.org/doc/numpy-dev/user/quickstart.html Prerequisites Before ...
随机推荐
- CefSharp 设置cookie
设置cookie var cookieManager = CefSharp.Cef.GetGlobalCookieManager(); await cookieManager.SetCookieAsy ...
- 【剑指offer】Q19:二叉树的镜像
def MirroRecursively(root): # root is None or just one node, return root if None == root or None == ...
- 创建MFC应用程序的类型:单文档+多文档+基于对话框
单文档支持文档视图架构.数据的保存--(读取--改动)文档类功能--显示(视图类功能),比較方便. 基于对话框,主窗体是对话框类型.能够方便的使用控件,所见即所得的编程,比較方便. 单文档类似&quo ...
- camera table表编译
mmm -j8 vendor/mediatek/proprietary/hardware/mtkcam/v1/common/paramsmgr/ 2>&1 | tee ft.lib.lo ...
- iOS10 推送通知详解(UserNotifications)
iOS10新增加了一个UserNotificationKit(用户通知框架)来整合通知相关的API,UserNotificationKit框架增加了很多令人惊喜的特性: 更加丰富的推送内容:现在可以设 ...
- 杂项:hive(数据仓库工具)
ylbtech-杂项:hive(数据仓库工具) hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapRedu ...
- Python3爬虫--两种方法(requests(urllib)和BeautifulSoup)爬取网站pdf
1.任务简介 本次任务是爬取IJCAI(国际人工智能联合会议)最新2018年的pdf论文文件. 本次编码用到了正则表达式从html里面提取信息,如下对正则表达式匹配规则作简要的介绍. 2.正则表达式规 ...
- 解决 dotnet core 1.x 命令行(cli) 下运行路径错误
环境: Windows 10,Visual Studio 2017 centos 7,nginx,supervisor,dotnet core 1.1 问题: 在 Linux 配置 superviso ...
- MySQL实现表之间的字段更新
新功能写好之后,需要把以前表数据更新一下,字段数据从以前的表中获取,只更新两个字段 UPDATE TABLE1,TABLE2 SET TABLE1.COLUMN1 = TABLE2.COLUMN1 , ...
- All Metro Apps on Windows 8.1 Do Not Work
所有的Metro Apps不能够正常打开,表现为打开后自动最小化到任务栏,并且不能恢复正常状态.在Event Viewer\Application中相应的错误信息为: Activation of ap ...