B - Cows and Poker Game
Problem description
There are n cows playing poker at a table. For the current betting phase, each player's status is either "ALLIN", "IN", or "FOLDED", and does not change throughout the phase. To increase the suspense, a player whose current status is not "FOLDED" may show his/her hand to the table. However, so as not to affect any betting decisions, he/she may only do so if all other players have a status of either "ALLIN" or "FOLDED". The player's own status may be either "ALLIN" or "IN".
Find the number of cows that can currently show their hands without affecting any betting decisions.
Input
The first line contains a single integer, n (2 ≤ n ≤ 2·105). The second line contains n characters, each either "A", "I", or "F". The i-th character is "A" if the i-th player's status is "ALLIN", "I" if the i-th player's status is "IN", or "F" if the i-th player's status is "FOLDED".
Output
The first line should contain a single integer denoting the number of players that can currently show their hands.
Examples
Input
6
AFFAAA
Output
4
Input
3
AFI
Output
1
Note
In the first sample, cows 1, 4, 5, and 6 can show their hands. In the second sample, only cow 3 can show her hand.
解题思路:每个玩家有两种状态:"ALLIN"或者"IN";只要当前玩家的状态不是"FOLDED",并且其他玩家的状态是"ALLIN"或者"FOLDED",那么当前玩家就可以将他的手放在桌子上,求将手放在桌子上的一共有几个玩家。做法:假设字符'A','F','I'出现的次数依次为a,f,i:①如果i==0,则字符串中只有'A'或'F',即将手放在桌子上的玩家人数为a;②如果i==1,当且仅当某位玩家的状态为"IN",则其他玩家的状态必定是'A'或者'F',即该玩家可以将手放在桌子上,人数为1;③如果i>1,则不满足条件,必定没有玩家的手放在桌子上,人数为0。
AC代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+;
int n,a=,f=,i=;char s[maxn];
int main(){
cin>>n;getchar();
cin>>s;
for(int j=;j<n;++j){
if(s[j]=='A')a++;
else if(s[j]=='F')f++;
else i++;
}
if(i==)cout<<a<<endl;//如果没有I,则直接输出A的个数
else if(i==)cout<<<<endl;//i==1时,其他只有A或F,则此时只有一个人的手放在桌上
else cout<<<<endl;//否则不满足条件即为0个
return ;
}
B - Cows and Poker Game的更多相关文章
- Codeforces Round #174 (Div. 2)
A. Cows and Primitive Roots 暴力. B. Cows and Poker Game 模拟. C. Cows and Sequence 线段树维护. D. Cow Progra ...
- Codeforces Round #174 (Div. 1 + Div. 2)
A. Cows and Primitive Roots 暴力. B. Cows and Poker Game 模拟. C. Cows and Sequence 线段树维护. D. Cow Progra ...
- 洛谷P3078 [USACO13MAR]扑克牌型Poker Hands
题目描述 Bessie and her friends are playing a unique version of poker involving a deck with \(N\) (\(1 \ ...
- P3078 [USACO13MAR]扑克牌型Poker Hands
题目描述 Bessie and her friends are playing a unique version of poker involving a deck with N (1 <= N ...
- 【贪心 思维题】[USACO13MAR]扑克牌型Poker Hands
看似区间数据结构的一道题 题目描述 Bessie and her friends are playing a unique version of poker involving a deck with ...
- 洛谷 P3078 [USACO13MAR]扑克牌型Poker Hands
P3078 [USACO13MAR]扑克牌型Poker Hands 题目描述 Bessie and her friends are playing a unique version of poker ...
- USACO Poker Hands
洛谷 P3078 [USACO13MAR]扑克牌型Poker Hands 题目传送门 JDOJ 2359: USACO 2013 Mar Silver 1.Poker Hands JDOJ传送门 题目 ...
- [LeetCode] Bulls and Cows 公母牛游戏
You are playing the following Bulls and Cows game with your friend: You write a 4-digit secret numbe ...
- POJ 2186 Popular Cows(Targin缩点)
传送门 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 31808 Accepted: 1292 ...
随机推荐
- Windows下Unity安装
安装教程: https://www.paws3d.com/lesson/us-0101/ 问题1: 安装并完成注册后,在网页上能登录,但打开Unity时不能启动成功,一直停留在如下界面 解决方案:断网 ...
- btrfs基础
btrfs文件系统简介 btrfs文件系统:技术预览版(Centos7) Btrfs(B-tree.Butter FS.Better FS),GPL授权,Orale2007提出是想用来取代Ext文 ...
- Promise嵌套问题/async await执行顺序
/* 原则: 执行完当前promise, 会把紧挨着的then放入microtask队尾, 链后面的第二个then暂不处理分析, */ 一. new Promise((resolve, reject) ...
- 名字竞技场 V3.0
更新内容 1.加入新boss,更高的难度. 2.支持组队模式勒! 3.针对大家反应的人物属性算法进行了修改,现在人物属性更多的取决于名字而不是随机数 4.用户界面优化 INF.代码拿走赞留下,不然你赢 ...
- 【http反向代理】多个域名指向同一个ip的不同网站解决方法
一个服务器需要挂载多个项目[重点是都能通过域名访问] 实现原理: 1.当前市面上看到的一些服务器,开放的端口一般都要求为 '80' 端口 所以80端口成了商用端口 2.域名的绑定是绑定一个一般是绑定你 ...
- copy the content of a file muliptle times and save as ordered files:
input: transient.case outputs: transient_1.case, transient_2.case,...transient_101.case ********** n ...
- PAT 1098. Insertion or Heap Sort
According to Wikipedia: Insertion sort iterates, consuming one input element each repetition, and gr ...
- Hibernate基于注解annotation的配置
Annotation在框架中是越来越受欢迎了,因为annotation的配置比起XML的配置来说方便了很多,不需要大量的XML来书写,方便简单了很多,只要几个annotation的配置,就可以完成我们 ...
- oracle 增量备份恢复策略(基础知识)
EXP和IMP是Oracle提供的一种逻辑备份工具.逻辑备份创建数据库对 象的逻辑拷贝并存入一个二进制转储文件.这种逻辑备份需要在数据库启动的情况下使用, 其导出实质就是读取一个数据库记录集(甚至可以 ...
- hdu_1041_Computer Transformation_201311051648
Computer Transformation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/ ...