思路:

http://blog.csdn.net/commonc/article/details/52291822

(照着算法步骤写……)

已知三点共圆 求圆心的时候 就设一下圆心坐标(x,y) 解个方程就好了

//By SiriusRen
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
int n;double R,tempx,tempy,tempz,tmpx,tmpy,tmpz;
struct Point{double x,y;}point[100050],Ans;
double Sqr(double x){return x*x;}
double dis(Point a,Point b){return sqrt(Sqr(a.x-b.x)+Sqr(a.y-b.y));}
bool in_circle(Point x){return dis(Ans,x)<=R;}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%lf%lf",&point[i].x,&point[i].y);
random_shuffle(point+1,point+n);
for(int i=1;i<=n;i++)if(!in_circle(point[i])){
Ans.x=point[i].x,Ans.y=point[i].y,R=0;
for(int j=1;j<i;j++)if(!in_circle(point[j])){
Ans.x=(point[i].x+point[j].x)/2;
Ans.y=(point[i].y+point[j].y)/2;
R=dis(Ans,point[j]);
for(int k=1;k<j;k++)if(!in_circle(point[k])){
tempz=point[j].x-point[i].x;
tempx=2*(point[i].y-point[j].y)/tempz;
tempy=(Sqr(point[j].x)+Sqr(point[j].y)-Sqr(point[i].x)-Sqr(point[i].y))/tempz;
tmpz=point[k].x-point[j].x;
tmpx=2*(point[j].y-point[k].y)/tmpz;
tmpy=(Sqr(point[k].x)+Sqr(point[k].y)-Sqr(point[j].x)-Sqr(point[j].y))/tmpz;
Ans.y=(tmpy-tempy)/(tempx-tmpx);
Ans.x=(tempx*Ans.y+tempy)/2;
R=dis(Ans,point[j]);
}
}
}
printf("%f\n%f %f\n",R,Ans.x,Ans.y);
}

BZOJ 1336&1337最小圆覆盖的更多相关文章

  1. Bzoj 1336&1337 Alien最小圆覆盖

    1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec  Memory Limit: 162 MBSec  Special Judge Submit: 1473  ...

  2. bzoj 1337 最小圆覆盖

    /************************************************************** Problem: 1337 User: idy002 Language: ...

  3. bzoj2823: [AHOI2012]信号塔&&1336: [Balkan2002]Alien最小圆覆盖&&1337: 最小圆覆盖

    首先我写了个凸包就溜了 这是最小圆覆盖问题,今晚学了一下 先随机化点,一个个加入 假设当前圆心为o,半径为r,加入的点为i 若i不在圆里面,令圆心为i,半径为0 再重新从1~i-1不停找j不在圆里面, ...

  4. BZOJ 1337: 最小圆覆盖1336: [Balkan2002]Alien最小圆覆盖(随机增量法)

    今天才知道有一种东西叫随机增量法就来学了= = 挺神奇的= = A.令ci为包括前i个点的最小圆,若第i+1个点无法被ci覆盖,则第i+1个点一定在ci+1上 B.令ci为包括前i个点的最小圆且p在边 ...

  5. 【BZOJ-1336&1337】Alie最小圆覆盖 最小圆覆盖(随机增量法)

    1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1573   ...

  6. 2018.07.04 BZOJ1336&&1337: Balkan2002Alien最小圆覆盖

    1336: [Balkan2002]Alien最小圆覆盖 1337: 最小圆覆盖 Time Limit: 1 Sec Memory Limit: 162 MBSec Special Judge Des ...

  7. [BZOJ 1336] [Balkan2002] Alien最小圆覆盖 【随机增量法】

    题目链接:BZOJ - 1336 题目分析 最小圆覆盖有一个算法叫做随机增量法,看起来复杂度像是 O(n^3) ,但是可以证明其实平均是 O(n) 的,至于为什么我不知道= = 为什么是随机呢?因为算 ...

  8. bzoj 1336 最小圆覆盖

    最小圆覆盖 问题:给定平面上的一个点集,求半径最小的一个圆,使得点集中的点都在其内部或上面. 随机增量算法: 定义:点集A的最小圆覆盖是Circle(A) 定理:如果Circle(A)=C1,且a不被 ...

  9. 【BZOJ】1336: [Balkan2002]Alien最小圆覆盖

    题解 我们先把所有点random_shuffle一下 然后对前i - 1个点计算一个最小圆覆盖,然后第i个点如果不在这个圆里,那么我们把这个点当成一个新的点,作为圆心,半径为0 从头枚举1 - i - ...

随机推荐

  1. Maven简单介绍(Maven是什么)

    简单介绍 Maven,在意第绪语中意为对知识的积累.Maven最初用来在Jakarta Turbine项目中简化该项目的构建过程. Jakarta Trubine项目有多个project.每一个pro ...

  2. 跟我学设计模式视频教程——适配器模式,适配器模式VS装饰模式

    课程视频 适配器模式 适配器模式VS装饰模式 唠嗑 课程笔记 课程笔记 课程代码 课程代码 新课程火热报名中 课程介绍

  3. cocos2d-x 2.2.2 在lua中更换CCSprite的图片

    废话不多说,直接上代码 --lua --获取场景 local scene= CCDirector:sharedDirector():getRunningScene() --创建精灵 local tes ...

  4. Android笔记三十三.BroadcastReceiver使用

        广播是一种广泛运用在应用程序之间传输信息的机制,而BroadcastReceiver是对发送出来的广播进行过滤接收并响应的一类组件. BroadcastReceiver本质上是一种全局监听器. ...

  5. zzulioj--1707--丧心病狂的计数(水题)

    1707: 丧心病狂的计数 Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 237  Solved: 105 SubmitStatusWeb Board ...

  6. 92.bower 需要git

    转自:https://blog.csdn.net/chenleismr/article/details/50458496Bower 是基于 Git 之上的包管理工具,它提供的包其源头都是一个 Git ...

  7. Swift学习笔记(10):类和结构体

    目录: 基本 属性 方法 下标 继承 基本 使用class和struct关键字定义类和结构体. ・类是引用类型,结构体和枚举是值类型 ・值类型被赋予给一个变量.常量或被传递给一个函数时,已值拷贝方式传 ...

  8. jq 方法函数(淡入淡出,查找元素,过滤)遍历

    淡入淡出:fadeIn fadeOut fadeToggle fadeTo 淡入:fadeIn(speed[,callback])   速度和回调函数 回调函数可以写匿名函数,或者方法名不加括号. s ...

  9. (转载)自定义View——弹性滑动

    滑动是Android开发中非常重要的UI效果,几乎所有应用都包含了滑动效果,而本文将对滑动的使用以及原理进行介绍. 一.scrollTo与ScrollBy View提供了专门的方法用于实现滑动效果,分 ...

  10. SGU 180 Inversions【树状数组】

    题意:求逆序数 和POJ那题求逆序数的一样,不过这题离散化之后,要去一下重,然后要开到long long #include<iostream> #include<cstdio> ...