2017国家集训队作业[agc006f]Blackout

题意:

有一个\(N*N\)的网格,一开始有\(M\)个格子被涂黑,给出这\(M\)个格子,和染色操作:如果有坐标为\((x,y),(y,z)\)的格子已被染黑,那么就可以染黑坐标为\((y,z)\)的格子。问操作到不能再操作的时候,网格里有多少个黑格子?(\(1\le N,M\le 10^5\),最开始给出的\(M\)个坐标互不相同)

题解:

在场上签到签了两个小时,看到这题一脸懵逼。= =!大概想到是把形如\((x,y),(y,z)\)格子之间连一条边,然后会产生个新点之类的。现在想想,这样的空间复杂度完全不对了,做法不可能是这个。(然而我在场上想到这的时候,决定去打暴力了)

每个\(OIer\)肯定做过一题,就是在网格上求某种合法方案,使得同一行、同一列只能有一个点。二分图匹配,对吧。那里选一个点等于行号同列之间连一条边。这题也是这样的模型。

把所有初始涂黑的点的行号同列号之间连一条单向边,那么所有点组成了若干个弱联通块,如果有边\(x\rightarrow y,y\rightarrow z\),就会产生\(z\rightarrow x\)的边,这样,我们发现一次操作一定生成了一个三元环,三染色。。。。。。。。不妨设染色顺序为\(0,1,2\)。

三种情况:

\(1.\)如果三种颜色没法全部用到,那么说明当前弱联通块无法进行操作。那么它对答案的贡献就是弱联通块的边数。

\(2.\)如果三种颜色全部用到了,但是存在某两个同颜色的点之间有边,那么说明这个弱联通块出现了环,稍微画画就能得出这个弱联通块最后一定会成为一个完全图,贡献为点数的平方。

\(3.\)其它情况,贡献为:颜色为颜色为\(0\)的点数\(*\)颜色为\(1\)的点数\(+\)颜色为\(1\)的点数\(*\)颜色为\(2\)的点数\(+\)颜色为\(2\)的点数\(*\)颜色为\(0\)的点数。

一名签到和暴力选手的啰嗦题解。。。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define fo(i,l,r) for(ll i=l;i<=r;i++)
#define of(i,l,r) for(ll i=l;i>=r;i--)
#define fe(i,u) for(ll i=head[u];i;i=e[i].next)
using namespace std;
typedef long long ll;
inline ll rd()
{
static ll x,f;
x=0,f=1;
char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
const ll N=100010;
struct edge{
ll v,ty,next;
edge(ll v=0,ll ty=0,ll next=0):v(v),ty(ty),next(next){}
}e[N<<1];
ll n,m,col[N],cnt[3],siz;
ll tot=0,head[N];
bool flag; inline void add(ll u,ll v,ll ty){e[++tot]=edge(v,ty,head[u]);head[u]=tot;} void dfs(ll u)
{
cnt[col[u]]++;
fe(i,u){
ll v=e[i].v,ty=e[i].ty;
siz+=(ty==1);
if(~col[v])flag|=(col[v]!=(col[u]+ty)%3);
else col[v]=(col[u]+ty)%3,dfs(v);
}
} int main()
{
#ifndef ONLINE_JUDGE
freopen("inb.txt","r",stdin);
#endif
n=rd();m=rd();
fo(i,1,m){
ll x=rd(),y=rd();
add(x,y,1);add(y,x,2);
}
memset(col,-1,sizeof col);
ll ans=0;
fo(i,1,n){
if(~col[i])continue;
cnt[col[i]=0]=cnt[1]=cnt[2]=siz=flag=0;
dfs(i);
if(flag)ans+=(cnt[0]+cnt[1]+cnt[2])*(cnt[0]+cnt[1]+cnt[2]);
else if(cnt[0]&&cnt[1]&&cnt[2])ans+=cnt[0]*cnt[1]+cnt[1]*cnt[2]+cnt[2]*cnt[0];
else ans+=siz;
}
printf("%lld\n",ans);
return 0;
}

2017国家集训队作业[agc006f]Blackout的更多相关文章

  1. 2017国家集训队作业Atcoder题目试做

    2017国家集训队作业Atcoder题目试做 虽然远没有达到这个水平,但是据说Atcoder思维难度大,代码难度小,适合我这种不会打字的选手,所以试着做一做 不知道能做几题啊 在完全自己做出来的题前面 ...

  2. 2017国家集训队作业[agc016b]Color Hats

    2017国家集训队作业[agc016b]Color Hats 题意: 有\(N\)个人,每个人有一顶帽子.帽子有不同的颜色.现在,每个人都告诉你,他看到的所有其它人的帽子共有多少种颜色,问有没有符合所 ...

  3. 2017国家集训队作业[agc016e]Poor Turkey

    2017国家集训队作业[agc016e]Poor Turkey 题意: 一开始有\(N\)只鸡是活着的,有\(M\)个时刻,每个时刻有两个数\(X_i,Y_i\),表示在第\(i\)个时刻在\(X_i ...

  4. 2017国家集训队作业[agc004f]Namori

    2017国家集训队作业[agc004f]Namori 题意: 给你一颗树或环套树,树上有\(N\)个点,有\(M\)条边.一开始,树上的点都是白色,一次操作可以选择一条端点颜色相同的边,使它的端点颜色 ...

  5. 2017国家集训队作业[arc082d]Sandglass

    2017国家集训队作业[arc082d]Sandglass 题意: ​ 有一个沙漏,初始时\(A\)瓶在上方,两个瓶子的最大容量都为\(X\)克,沙子流动的速度为\(1g\)每单位时间.给出\(K\) ...

  6. 2017国家集训队作业[arc076d/f][Exhausted?]

    2017国家集训队作业[arc076d/f][Exhausted?] 题意: ​ 有\(N\)个人,\(M\)把椅子,给出\(...L_i.R_i\)表示第\(i\)个人可以选择编号为\(1\sim ...

  7. 2017国家集训队作业[agc006e]Rotate 3x3

    2017国家集训队作业[agc006e]Rotate 3x3 题意: ​ 给你一个\(3*N\)的网格,每次操作选择一个\(3*3\)的网格,旋转\(180^\circ\).问可不可以使每个位置\(( ...

  8. 2017国家集训队作业[agc014d]Black and White Tree

    2017国家集训队作业[agc014d]Black and White Tree 题意: ​ 有一颗n个点的树,刚开始每个点都没有颜色.Alice和Bob会轮流对这棵树的一个点涂色,Alice涂白,B ...

  9. 2017国家集训队作业[agc008f]Black Radius

    2017国家集训队作业[agc008f]Black Radius 时隔4个月,经历了省赛打酱油和中考各种被吊打后,我终于回想起了我博客园的密码= = 题意: ​ 给你一棵树,树上有若干个关键点.选中某 ...

随机推荐

  1. SQL Server在用户自定义函数(UDF)中使用临时表

    SQL Server在用户自定义函数中UDF使用临时表,这是不允许的. 有时是为了某些特殊的场景, 我们可以这样的实现: CREATE TABLE #temp (id INT) GO INSERT I ...

  2. Zero-input latency scheduler: Scheduler Overhaul

    Scheduler Overhaul, with contributions from rbyers, sadrul, rjkroege, sievers, epenner, skyostil, br ...

  3. 学习Go语言之单例模式

    单例模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建.这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象 // 单例模式 package main ...

  4. POJ2104 K-th Number(线段树,二分,vector)

    题意 不带修改区间第k小.(n<=100000) 题解 建立线段数和vector数组(vector为当前区间排列之后的序列)(归并) 然后对于每一个询问二分答案. 问题就转化为区间有多少数小于等 ...

  5. 监控memcached服务

    #!/bin/bash #监控memcached服务 printf "del key\r\n" | nc 127.0.0.1 11211 &>/dev/null #使 ...

  6. HDU 4398 Template Library Management (最优页面调度算法)

    中等偏易题.操作系统理论中的最优页面调度算法,贪心.当需要淘汰某个模版时,淘汰掉当前手中在最远的将来才会被用到(或者以后永远不再用到)的那个. 代码: #include <iostream> ...

  7. 【Codeforces Round #423 (Div. 2) C】String Reconstruction

    [Link]:http://codeforces.com/contest/828/problem/C [Description] 让你猜一个字符串原来是什么; 你知道这个字符串的n个子串; 且知道第i ...

  8. C# Winform利用POST传值方式模拟表单提交数据(Winform与网页交互)

    其原理是,利用winfrom模拟表单提交数据.将要提交的參数提交给网页,网页运行代码.得到数据.然后Winform程序将网页的全部源码读取下来.这样就达到windows应用程序和web应用程序之间传參 ...

  9. Linux下查看txt文档

    当我们在使用Window操作系统的时候,可能使用最多的文本格式就是txt了,可是当我们将Window平台下的txt文本文档复制到Linux平台下查看时,发现原来的中文所有变成了乱码. 没错, 引起这个 ...

  10. vue7 下拉列表

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...