Vectorization

Vectorization refers to a powerful way to speed up your algorithms. Numerical computing and parallel computing researchers have put decades of work into making certain numerical operations (such as matrix-matrix multiplication, matrix-matrix addition, matrix-vector multiplication) fast. The idea of vectorization is that we would like to express our learning algorithms in terms of these highly optimized operations.

More generally, a good rule-of-thumb for coding Matlab/Octave is:

Whenever possible, avoid using explicit for-loops in your code.

A large part of vectorizing our Matlab/Octave code will focus on getting rid of for loops, since this lets Matlab/Octave extract more parallelism from your code, while also incurring less computational overhead from the interpreter.

多用向量运算,别把向量拆成标量然后再循环

Logistic Regression Vectorization Example

Consider training a logistic regression model using batch gradient ascent. Suppose our hypothesis is

where we let , so that and , and is our intercept term. We have a training set of examples, and the batch gradient ascent update rule is , where is the log likelihood and is its derivative.

We thus need to compute the gradient:

Further, suppose the Matlab/Octave variable y is a row vector of the labels in the training set, so that the variable y(i) is .

Here's truly horrible, extremely slow, implementation of the gradient computation:

% Implementation
grad = zeros(n+,);
for i=:m,
h = sigmoid(theta'*x(:,i));
temp = y(i) - h;
for j=:n+,
grad(j) = grad(j) + temp * x(j,i);
end;
end;

The two nested for-loops makes this very slow. Here's a more typical implementation, that partially vectorizes the algorithm and gets better performance:

% Implementation
grad = zeros(n+,);
for i=:m,
grad = grad + (y(i) - sigmoid(theta'*x(:,i)))* x(:,i);
end;

Neural Network Vectorization

Forward propagation

Consider a 3 layer neural network (with one input, one hidden, and one output layer), and suppose x is a column vector containing a single training example . Then the forward propagation step is given by:

This is a fairly efficient implementation for a single example. If we have m examples, then we would wrap a for loop around this.

% Unvectorized implementation
for i=:m,
z2 = W1 * x(:,i) + b1;
a2 = f(z2);
z3 = W2 * a2 + b2;
h(:,i) = f(z3);
end;

For many algorithms, we will represent intermediate stages of computation via vectors. For example, z2, a2, and z3 here are all column vectors that're used to compute the activations of the hidden and output layers. In order to take better advantage of parallelism and efficient matrix operations, we would like to have our algorithm operate simultaneously on many training examples. Let us temporarily ignore b1 and b2 (say, set them to zero for now). We can then implement the following:

% Vectorized implementation (ignoring b1, b2)
z2 = W1 * x;
a2 = f(z2);
z3 = W2 * a2;
h = f(z3)

In this implementation, z2, a2, and z3 are all matrices, with one column per training example.

A common design pattern in vectorizing across training examples is that whereas previously we had a column vector (such as z2) per training example, we can often instead try to compute a matrix so that all of these column vectors are stacked together to form a matrix. Concretely, in this example, a2 becomes a s2 by m matrix (where s2 is the number of units in layer 2 of the network, and m is the number of training examples). And, the i-th column of a2 contains the activations of the hidden units (layer 2 of the network) when the i-th training example x(:,i) is input to the network.

% Inefficient, unvectorized implementation of the activation function
function output = unvectorized_f(z)
output = zeros(size(z))
for i=:size(z,),
for j=:size(z,),
output(i,j) = /(+exp(-z(i,j)));
end;
end;
end % Efficient, vectorized implementation of the activation function
function output = vectorized_f(z)
output = ./(+exp(-z)); % "./" is Matlab/Octave's element-wise division operator.
end

Finally, our vectorized implementation of forward propagation above had ignored b1 and b2. To incorporate those back in, we will use Matlab/Octave's built-in repmat function. We have:

% Vectorized implementation of forward propagation
z2 = W1 * x + repmat(b1,,m);
a2 = f(z2);
z3 = W2 * a2 + repmat(b2,,m);
h = f(z3)

repmat !!矩阵变形!!

Backpropagation

We are in a supervised learning setting, so that we have a training set of m training examples. (For the autoencoder, we simply set y(i) = x(i), but our derivation here will consider this more general setting.)

we had that for a single training example (x,y), we can compute the derivatives as

Here, denotes element-wise product. For simplicity, our description here will ignore the derivatives with respect to b(l), though your implementation of backpropagation will have to compute those derivatives too.

gradW1 = zeros(size(W1));
gradW2 = zeros(size(W2));
for i=:m,
delta3 = -(y(:,i) - h(:,i)) .* fprime(z3(:,i));
delta2 = W2'*delta3(:,i) .* fprime(z2(:,i)); gradW2 = gradW2 + delta3*a2(:,i)';
gradW1 = gradW1 + delta2*a1(:,i)';
end;

This implementation has a for loop. We would like to come up with an implementation that simultaneously performs backpropagation on all the examples, and eliminates this for loop.

To do so, we will replace the vectors delta3 and delta2 with matrices, where one column of each matrix corresponds to each training example. We will also implement a function fprime(z) that takes as input a matrix z, and applies element-wise.

Sparse autoencoder

When performing backpropagation on a single training example, we had taken into the account the sparsity penalty by computing the following:

也就是不要用循环一个样本一个样本的去更新参数,而是要将样本组织成矩阵的形式,应用矩阵运算,提高效率。

Vectorized implementation的更多相关文章

  1. DL三(向量化编程 Vectorized implementation)

    向量化编程实现 Vectorized implementation 一向量化编程 Vectorization 1.1 基本术语 向量化 vectorization 1.2 向量化编程(Vectoriz ...

  2. 机器学习公开课笔记(4):神经网络(Neural Network)——表示

    动机(Motivation) 对于非线性分类问题,如果用多元线性回归进行分类,需要构造许多高次项,导致特征特多学习参数过多,从而复杂度太高. 神经网络(Neural Network) 一个简单的神经网 ...

  3. 转载 Deep learning:一(基础知识_1)

    前言: 最近打算稍微系统的学习下deep learing的一些理论知识,打算采用Andrew Ng的网页教程UFLDL Tutorial,据说这个教程写得浅显易懂,也不太长.不过在这这之前还是复习下m ...

  4. Deep learning:一(基础知识_1)

    本文纯转载: 主要是想系统的跟tornadomeet的顺序走一遍deeplearning; 前言: 最近打算稍微系统的学习下deep learing的一些理论知识,打算采用Andrew Ng的网页教程 ...

  5. machine learning 之 Neural Network 1

    整理自Andrew Ng的machine learning课程week 4. 目录: 为什么要用神经网络 神经网络的模型表示 1 神经网络的模型表示 2 实例1 实例2 多分类问题 1.为什么要用神经 ...

  6. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...

  7. Coursera机器学习+deeplearning.ai+斯坦福CS231n

    日志 20170410 Coursera机器学习 2017.11.28 update deeplearning 台大的机器学习课程:台湾大学林轩田和李宏毅机器学习课程 Coursera机器学习 Wee ...

  8. Neural Networks and Deep Learning 课程笔记(第三周)浅层神经网络(Shallow neural networks)

    3.1 神经网络概述(Neural Network Overview ) (神经网络中,我们要反复计算a和z,最终得到最后的loss function) 3.2 神经网络的表示(Neural Netw ...

  9. [UFLDL] Basic Concept

    博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html 参考资料: UFLDL wiki UFLDL St ...

随机推荐

  1. js确认框confirm()用法实例详解

    先为大家介绍javascript确认框的三种使用方法,具体内容如下 第一种方法:挺好用的,确认以后才能打开下载地址页面.原理也比较清晰.主要用于删除单条信息确认. ? 1 2 3 4 5 6 7 8 ...

  2. caffe命令及其参数解析

    caffe的c++主程序(caffe.cpp)放在根目录下的tools文件夹内, 当然还有一些其它的功能文件,如:convert_imageset.cpp, train_net.cpp, test_n ...

  3. Debian9.5 WPS for Linux字体配置(字体缺失解决办法)

    启动WPS for Linux后,出现提示"系统缺失字体" . 出现提示的原因是因为WPS for Linux没有自带windows的字体,只要在Linux系统中加载字体即可. 具 ...

  4. Mac sublime快捷键操作

    1.打开命令面板 command + shift + p 2.打开关闭side bar command + k , command + b 3.打开新sublime窗口 command + shift ...

  5. bzoj1618 购买干草

    Description 约翰的干草库存已经告罄,他打算为奶牛们采购日(1≤日≤50000)磅干草.他知道N(1≤N≤100)个干草公司,现在用1到N给它们编号.第i个公司卖的干草包重量为Pi(1≤Pi ...

  6. 【Codeforces Round #420 (Div. 2) C】Okabe and Boxes

    [题目链接]:http://codeforces.com/contest/821/problem/C [题意] 给你2*n个操作; 包括把1..n中的某一个数压入栈顶,以及把栈顶元素弹出; 保证压入和 ...

  7. Spring MVC学习总结(6)——一些Spring MVC的使用技巧

    APP服务端的Token验证 通过拦截器对使用了 @Authorization 注解的方法进行请求拦截,从http header中取出token信息,验证其是否合法.非法直接返回401错误,合法将to ...

  8. 洛谷 P1056 排座椅

    P1056 排座椅 题目描述 上课的时候总会有一些同学和前后左右的人交头接耳,这是令小学班主任十分头疼的一件事情.不过,班主任小雪发现了一些有趣的现象,当同学们的座次确定下来之后,只有有限的D对同学上 ...

  9. javascript小白学习指南1---0

    第二章 变量和作用域    在看第二章时我希望,你能够回想一下前一次所讲的内容  假设有所遗忘 点这里    今天我们来说说 变量和作用域的问题 本章主要内容 基本类型和引用类型 运行环境 垃圾回收( ...

  10. Android程序猿自己动手制作.9.png图片

    1:怎样制作9.png图片素材: 打开SDK工具文件夹下: draw9patch.zip  解压执行draw9patch.bat.有的直接搜索会有:draw9patch.bat. 双击执行后,例如以下 ...