题目描述:

大概的意思就是根据无限猴子定理,无限只猴子坐在打字机旁瞎敲,总有一个能敲出莎士比亚文集。现在给你一个打字机和一只猴子,打字机的每个按钮(共n个)上的字母及猴子按下这个按钮的概率已知,而且猴子只能按m下按钮,又给定一个串,问猴子打出的乱码中含这个串的概率。

其中n<=26,m<=1000,多组数据,以n=0,m=0结束。以百分数形式输出,保留小数点后2位。

样例:

输入:

4 10
w 0.25
o 0.25
r 0.25
d 0.25
word
2 10
a 1.0
b 0.0
abc
2 100
a 0.312345
b 0.687655
abab
0 0

输出:

2.73%
0.00%
98.54%

解题思路:

对于第一组数据(work)

很显然算法是:0.25*0.25*0.25*0.25*7*100%=2.73%;

而对于第三组(abab)就不成立了,为什么呢?

显然是因为第一组没有重复的字母出现,也就是说,如果你的猴子恰好打下了aba,然后它又不幸地打下了a那么也不算太糟,至少你只需要再打一个bab就可以完成任务了。而对于第一只猴子就没有那么幸运了,如果它打下了wor又不幸地打下了r,那么它必须再打下work才能完成任务。

也就是说,即使你打下了错误的字母,你也有可能创造了一个前缀。

所以说我们只需要求出一个错误的字符创造出的前缀是谁,就可以更新这个前缀出现的概率了。

那么考虑用dp[i][j]表示在猴子打下第i个字母时字符串完成到j的匹配的概率。

而这个由错误创造的前缀是谁,这是不是KMP。

然而这和普通的KMP不一样,或者我学了假的KMP,这次kmp的next数组存的是这个模式串第i位的值对应存在的前缀的位置,也就是说,这次是成功指针,而非失配指针。

dp方程就出来了:dp[这一次敲击][最长匹配的新字符最长前缀]=∑dp[上一次敲击][最长匹配](枚举新字符是谁,再进行前缀操作)

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m;
int l;
bool JDr_is_Handsome=true;
char cmd[];
char a[];
int op[];
int nxt[];
double p[];
double dp[][];
int main()
{
while(JDr_is_Handsome)
{
scanf("%d%d",&n,&m);
if(!n&&!m)
return ;
memset(dp,,sizeof(dp));
memset(p,,sizeof(p));
for(int i=;i<=n;i++)
{
scanf("%s",cmd+);
op[i]=cmd[];
scanf("%lf",&p[i]);
}
scanf("%s",a+);
l=strlen(a+);
nxt[]=;
for(int i=,j=;i<=l;)
{
while(j&&a[j+]!=a[i])j=nxt[j];
if(a[j+]==a[i])j++;
nxt[i]=j;
i++;
}
dp[][]=1.00;
for(int i=;i<=m;i++)
{
for(int j=;j<l;j++)
{
for(int k=;k<=n;k++)
{
int pos=j;
while(pos&&a[pos+]!=op[k])
pos=nxt[pos];
if(a[pos+]==op[k])pos++;
dp[i][pos]+=dp[i-][j]*p[k];
}
}
}
double ans=;
for(int i=l;i<=m;i++)
ans+=dp[i][l];
printf("%.2lf%%\n",ans*100.00);
}
return ;
}

HDU3689 Infinite monkey theorem 无限猴子(字符串DP+KMP)的更多相关文章

  1. hdu-3689 Infinite monkey theorem 概率dp+kmp

    有一只猴子随机敲键盘,给出它可能敲的键以及敲各个键的概率. 输入:n,表示有多少个键,m,表示猴子会敲m次键 n个二元组(字母,数字) 表示键代表的字母及其被敲的概率. 最后一个目标字符串. 问这只猴 ...

  2. HDU 3689 Infinite monkey theorem [KMP DP]

    Infinite monkey theorem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...

  3. hdu 3689 杭州 10 现场 J - Infinite monkey theorem 概率dp kmp 难度:1

    J - Infinite monkey theorem Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &am ...

  4. HDU 3689 Infinite monkey theorem(DP+trie+自动机)(2010 Asia Hangzhou Regional Contest)

    Description Could you imaging a monkey writing computer programs? Surely monkeys are smart among ani ...

  5. hdu 3689 Infinite monkey theorem

    Infinite monkey theorem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  6. HUD3689 Infinite monkey theorem

    Infinite monkey theorem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  7. [HDU 3689]Infinite monkey theorem (KMP+概率DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3689 黄老师说得对,题目只有做wa了才会有收获,才会有提高. 题意:一个猴子敲键盘,键盘上有n个键,猴 ...

  8. [AC自己主动机+可能性dp] hdu 3689 Infinite monkey theorem

    意甲冠军: 给n快报,和m频率. 然后进入n字母出现的概率 然后给目标字符串str 然后问m概率倍的目标字符串是敲数量. 思维: AC自己主动机+可能性dp简单的问题. 首先建立trie图,然后就是状 ...

  9. HDU 3689 Infinite monkey theorem ——(自动机+DP)

    这题由于是一个单词,其实直接kmp+dp也无妨.建立自动机当然也是可以的.设dp[i][j]表示匹配到第i个字母的时候,在单词中处于第j个位置的概率,因此最终的答案是dp[0~m][len],m是输入 ...

随机推荐

  1. Android开发当中Parcelable接口的使用

    本文转载于:http://www.2cto.com/kf/201205/132814.html 本文稍微做了些修改 android提供了一种新的类型:Parcel.本类被用作封装数据的容器,封装后的数 ...

  2. BZOJ4320 homework

    Description:给定\(n\)个操作,向集合中加入一个数(保证每个数不同)或者查询集合内\(\text{%Y}\)的最小值 Solution:对于小于\(\sqrt{300000}\)的直接暴 ...

  3. 【Docker入门】

    目录 Linux容器 Docker的优势 Docker三大概念 安装使用Docker 补充知识 [Docker入门] 发布文章 "qq_41964425" @ *** 所谓Dock ...

  4. 重新安装python2.6 和 yum (不可以直接安装yum yum 依赖于python2.6)

    (升级或卸载Python导致 yum出错) 一: 升级python导致yum出错 1. cd  /usr/bin/yum 2.  #!/usr/bin/python 修改为    #!/usr/bin ...

  5. pip-window安装

    windows 安装: 保证计算机联网直接使用cmd 执行 python -m pip install -U pip 自动安装 找到 python安装的路径 C:\Users\Administrato ...

  6. vue 常用ui组件库

    vux github ui demo:https://github.com/airyland/vux Mint UI 项目主页:http://mint-ui.github.io/#!/zh-cn de ...

  7. 【Codeforces Round #459 (Div. 2) C】The Monster

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 左括号看成1 右括号看成-1 设置l,r表示前i个数的和的上下界 遇到 左括号 l和r同时加1 遇到右括号 同时减1 遇到问号 因为 ...

  8. 【Uva 10285】Longest Run on a Snowboard

    [Link]: [Description] 在一个r*c的格子上; 求最长的下降路径; [Solution] 记忆化搜索; f[x][y]表示从(x,y)这个格子往下还能走多远; 因为是严格递增,所以 ...

  9. Swift之 vm10虚拟机安装Mac OS X10.10教程

    VM10装Mac OS X 10.9.3及更新到Mac OS X 10.10,让你的windows也能玩Swift .   近期WWDC放出终极大招--新的编程语言Swift(雨燕),导致一大波程序猿 ...

  10. cocos2d-x的声音控制

    声音控制SimpleAudioEngine是单例.下面是其方法. [cpp] view plaincopy //获得SimpleAudioEngine的实例 static SimpleAudioEng ...