time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

It’s that time of the year, Felicity is around the corner and you can see people celebrating all around the Himalayan region. The Himalayan region has n gyms. The i-th gym has gi Pokemon in it. There are m distinct Pokemon types in the Himalayan region numbered from 1 to m. There is a special evolution camp set up in the fest which claims to evolve any Pokemon. The type of a Pokemon could change after evolving, subject to the constraint that if two Pokemon have the same type before evolving, they will have the same type after evolving. Also, if two Pokemon have different types before evolving, they will have different types after evolving. It is also possible that a Pokemon has the same type before and after evolving.

Formally, an evolution plan is a permutation f of {1, 2, …, m}, such that f(x) = y means that a Pokemon of type x evolves into a Pokemon of type y.

The gym leaders are intrigued by the special evolution camp and all of them plan to evolve their Pokemons. The protocol of the mountain states that in each gym, for every type of Pokemon, the number of Pokemon of that type before evolving any Pokemon should be equal the number of Pokemon of that type after evolving all the Pokemons according to the evolution plan. They now want to find out how many distinct evolution plans exist which satisfy the protocol.

Two evolution plans f1 and f2 are distinct, if they have at least one Pokemon type evolving into a different Pokemon type in the two plans, i. e. there exists an i such that f1(i) ≠ f2(i).

Your task is to find how many distinct evolution plans are possible such that if all Pokemon in all the gyms are evolved, the number of Pokemon of each type in each of the gyms remains the same. As the answer can be large, output it modulo 109 + 7.

Input

The first line contains two integers n and m (1 ≤ n ≤ 105, 1 ≤ m ≤ 106) — the number of gyms and the number of Pokemon types.

The next n lines contain the description of Pokemons in the gyms. The i-th of these lines begins with the integer gi (1 ≤ gi ≤ 105) — the number of Pokemon in the i-th gym. After that gi integers follow, denoting types of the Pokemons in the i-th gym. Each of these integers is between 1 and m.

The total number of Pokemons (the sum of all gi) does not exceed 5·105.

Output

Output the number of valid evolution plans modulo 109 + 7.

Examples

input

2 3

2 1 2

2 2 3

output

1

input

1 3

3 1 2 3

output

6

input

2 4

2 1 2

3 2 3 4

output

2

input

2 2

3 2 2 1

2 1 2

output

1

input

3 7

2 1 2

2 3 4

3 5 6 7

output

24

Note

In the first case, the only possible evolution plan is:

In the second case, any permutation of (1,  2,  3) is valid.

In the third case, there are two possible plans:

In the fourth case, the only possible evolution plan is:

【题目链接】:http://codeforces.com/contest/757/problem/C

【题解】



记录最后每种动物在哪些gym里面出现过;

如果2动物在3号gym里面出现两次,在4号gym里面出现3次;

定义

    vector <int> a[MAXM];

则a[2]={3,3,4,4,4};

如果3号动物和2号之间能互相进化

则必有a[2]=a[3]

即2号动物在哪个gym里面出现过,3号动物也要在那个gym里面出现;

且要求出现的次数相同;(所以a[x]里面可能有重复的数字表示它在这个

gym里面出现多次);

(如果符合这样的要求,则2和3能够转化,且也这有这样才能满足转化过后2和3在各个gym里面出现的次数都不变);

然后用一个sort把a[1..m]都排序一下;

a里面的内容也要排序;

这样相同的a就会在靠在一起;

那些相同的a能够互相转化;

每个相同的a构成的若干个集合设为Si

则每个集合的方案数为(Si)!

答案就是

∏((Si)!)

预处理出1..MAXM的阶乘;

那些没有出现的动物;显然可以任意转化;

所以也是N!



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%I64d",&x) typedef pair<int,int> pii;
typedef pair<LL,LL> pll; const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int MAXN = 110;
const int MAXM = 1e6+100;
const LL MOD = 1e9+7; int n,m;
vector <int> a[MAXM];
LL jc[MAXM]; int main()
{
//freopen("F:\\rush.txt","r",stdin);
jc[0] = 1;
for (LL i = 1;i <= 1000000;i++)
jc[i] = (jc[i-1]*i)%MOD;
rei(n);rei(m);
rep1(i,1,n)
{
int num;
rei(num);
rep1(j,1,num)
{
int x;
rei(x);
a[x].pb(i);
}
}
sort(a+1,a+1+m);
LL ans = 1;
rep1(i,1,m)
{
int j = i + 1;
while (j<=m && a[j]==a[i]) j++;
int len = j-i;
ans = (ans * jc[len])%MOD;
i = j-1;
}
cout << ans << endl;
return 0;
}

【codeforces 757C】Felicity is Coming!的更多相关文章

  1. 【codeforces 757D】Felicity's Big Secret Revealed

    [题目链接]:http://codeforces.com/problemset/problem/757/D [题意] 给你一个01串; 让你分割这个01串; 要求2切..n+1切; 对于每一种切法 所 ...

  2. 【codeforces 415D】Mashmokh and ACM(普通dp)

    [codeforces 415D]Mashmokh and ACM 题意:美丽数列定义:对于数列中的每一个i都满足:arr[i+1]%arr[i]==0 输入n,k(1<=n,k<=200 ...

  3. 【codeforces 707E】Garlands

    [题目链接]:http://codeforces.com/contest/707/problem/E [题意] 给你一个n*m的方阵; 里面有k个联通块; 这k个联通块,每个连通块里面都是灯; 给你q ...

  4. 【codeforces 707C】Pythagorean Triples

    [题目链接]:http://codeforces.com/contest/707/problem/C [题意] 给你一个数字n; 问你这个数字是不是某个三角形的一条边; 如果是让你输出另外两条边的大小 ...

  5. 【codeforces 709D】Recover the String

    [题目链接]:http://codeforces.com/problemset/problem/709/D [题意] 给你一个序列; 给出01子列和10子列和00子列以及11子列的个数; 然后让你输出 ...

  6. 【codeforces 709B】Checkpoints

    [题目链接]:http://codeforces.com/contest/709/problem/B [题意] 让你从起点开始走过n-1个点(至少n-1个) 问你最少走多远; [题解] 肯定不多走啊; ...

  7. 【codeforces 709C】Letters Cyclic Shift

    [题目链接]:http://codeforces.com/contest/709/problem/C [题意] 让你改变一个字符串的子集(连续的一段); ->这一段的每个字符的字母都变成之前的一 ...

  8. 【Codeforces 429D】 Tricky Function

    [题目链接] http://codeforces.com/problemset/problem/429/D [算法] 令Si = A1 + A2 + ... + Ai(A的前缀和) 则g(i,j) = ...

  9. 【Codeforces 670C】 Cinema

    [题目链接] http://codeforces.com/contest/670/problem/C [算法] 离散化 [代码] #include<bits/stdc++.h> using ...

随机推荐

  1. springMVC注解用法:@modelattribute的用法

    在Spring MVC里,@ModelAttribute通常使用在Controller方法的参数注解中,用于解释model entity,但同时,也可以放在方法注解里. 如果把@ModelAttrib ...

  2. ArcGIS Engine 线段绘制

    转自ArcGIS Engine 线段绘制研究 基本步骤 构建形状 1. 创建 IPoint IPoint m_Point = new PointClass(); m_Point.PutCoords(x ...

  3. method initializationerror not found:JUnit4单元測试报错问题

           今天使用JUnit 4进行单元測试时,測试程序一直执行不起来,报method initializationerror not found错误.例如以下:            网上说版本 ...

  4. arukas 的 Endpoint

    arukas 的 Endpoint 什么是端点 What is Endpoint arukas.io 的实例几乎每周都自动重新启动,当实例重新启动时,其端口会更改.IP地址和端口的平均寿命是一周,有时 ...

  5. ie为什么那么垃圾(不是ie垃圾,是ie用的人太多了,很多在用低版本)

    ie为什么那么垃圾(不是ie垃圾,是ie用的人太多了,很多在用低版本) 一.总结 1.我们觉得ie差的原因:我们拿老的ie和最新的其它浏览器做比较了,两者相差了很多年.比较微软几十年才发布了11个ie ...

  6. JavaScript 倒计时器,闹钟功能

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  7. Python 极简教程(五)输入输出

    输入函数,用于接收键盘输入.主要用于在学习和练习过程中,增加练习的乐趣.让我们的程序相对完整和具备简单的交互能力. 输出函数,将代码运行结果打印在控制台上,同样也能让我们观察程序运行的结果.也是为了增 ...

  8. C#集合类:动态数组、队列、栈、哈希表、字典

    1.动态数组:ArrayList 主要方法:Add.AddRange.RemoveAt.Remove 2.队列:Queue 主要方法:Enqueue入队列.Dequeue出队列.Peek返回Queue ...

  9. zeromq and jzmq

    install c test install jzmq java test Storm UI Cluster Summary Version Nimbus uptime Supervisors Use ...

  10. 洛谷 P1157 组合的输出

    P1157 组合的输出 题目描述 排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r<=n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r个数. 现 ...