Labyrinth
Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 4062   Accepted: 1529

Description

The northern part of the Pyramid contains a very large and complicated labyrinth. The labyrinth is divided into square blocks, each of them either filled by rock, or free. There is also a little hook on the floor in the center of every free block. The ACM have
found that two of the hooks must be connected by a rope that runs through the hooks in every block on the path between the connected ones. When the rope is fastened, a secret door opens. The problem is that we do not know which hooks to connect. That means
also that the neccessary length of the rope is unknown. Your task is to determine the maximum length of the rope we could need for a given labyrinth.

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers C and R (3 <= C,R <= 1000) indicating the number of columns and rows. Then exactly R lines follow,
each containing C characters. These characters specify the labyrinth. Each of them is either a hash mark (#) or a period (.). Hash marks represent rocks, periods are free blocks. It is possible to walk between neighbouring blocks only, where neighbouring blocks
are blocks sharing a common side. We cannot walk diagonally and we cannot step out of the labyrinth. 

The labyrinth is designed in such a way that there is exactly one path between any two free blocks. Consequently, if we find the proper hooks to connect, it is easy to find the right path connecting them.

Output

Your program must print exactly one line of output for each test case. The line must contain the sentence "Maximum rope length is X." where Xis the length of the longest path between any two free blocks, measured in blocks.

Sample Input

2
3 3
###
#.#
###
7 6
#######
#.#.###
#.#.###
#.#.#.#
#.....#
#######

Sample Output

Maximum rope length is 0.
Maximum rope length is 8.

Hint

Huge input, scanf is recommended. 

If you use recursion, maybe stack overflow. and now C++/c 's stack size is larger than G++/gcc

Source

寻找两个相差最远的‘.’,树的直径两次bfs,先找一个最长路,然后从端点开始继续搜
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
int dx[4]={0,0,1,-1};
int dy[4]={1,-1,0,0};
struct node
{
int x,y,step;
}temp,p;
int vis[1010][1010],sx,sy,ans,m,n;
char map[1010][1010];
void init()
{
memset(map,'\0',sizeof(map));
memset(vis,0,sizeof(vis));
ans=0;
sx=sy=0;
}
void getmap()
{
int flag=0;
for(int i=0;i<m;i++)
{
scanf("%s",map[i]);
for(int j=0;j<n&&!flag;j++)
{
if(map[i][j]=='.')
{
sx=i;
sy=j;
flag=1;
}
}
}
}
int judge(node s1)
{
if(s1.x<0||s1.x>=m||s1.y<0||s1.y>=n)
return 1;
if(map[s1.x][s1.y]=='#'||vis[s1.x][s1.y])
return 1;
return 0;
}
void bfs(int x,int y)
{
memset(vis,0,sizeof(vis));
queue<node>q;
p.x=sx;
p.y=sy;
p.step=0;
q.push(p);
vis[sx][sy]=1;
while(!q.empty())
{
p=q.front();
q.pop();
for(int i=0;i<4;i++)
{
temp.x=p.x+dx[i];
temp.y=p.y+dy[i];
if(judge(temp)) continue;
temp.step=p.step+1;
if(temp.step>ans)
{
ans=temp.step;
sx=temp.x;
sy=temp.y;
}
vis[temp.x][temp.y]=1;
q.push(temp);
}
}
}
void solve()
{
bfs(sx,sy);
bfs(sx,sy);
printf("Maximum rope length is %d.\n",ans);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
getmap();
solve();
}
return 0;
}

poj--1383--Labyrinth(树的直径)的更多相关文章

  1. poj 1383 Labyrinth【迷宫bfs+树的直径】

    Labyrinth Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 4004   Accepted: 1504 Descrip ...

  2. POJ 1383 Labyrinth (bfs 树的直径)

    Labyrinth 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/E Description The northern part ...

  3. poj 1383 Labyrinth

    题目连接 http://poj.org/problem?id=1383 Labyrinth Description The northern part of the Pyramid contains ...

  4. POJ 1985 Cow Marathon && POJ 1849 Two(树的直径)

    树的直径:树上的最长简单路径. 求解的方法是bfs或者dfs.先找任意一点,bfs或者dfs找出离他最远的那个点,那么这个点一定是该树直径的一个端点,记录下该端点,继续bfs或者dfs出来离他最远的一 ...

  5. POJ 1383 Labyrinth (树的直径求两点间最大距离)

    Description The northern part of the Pyramid contains a very large and complicated labyrinth. The la ...

  6. POJ 1985 求树的直径 两边搜OR DP

    Cow Marathon Description After hearing about the epidemic of obesity in the USA, Farmer John wants h ...

  7. Labyrinth 树的直径加DFS

    The northern part of the Pyramid contains a very large and complicated labyrinth. The labyrinth is d ...

  8. POJ 1849 Two(树的直径--树形DP)(好题)

    大致题意:在某个点派出两个点去遍历全部的边,花费为边的权值,求最少的花费 思路:这题关键好在这个模型和最长路模型之间的转换.能够转换得到,全部边遍历了两遍的总花费减去最长路的花费就是本题的答案,要思考 ...

  9. 算法笔记--树的直径 && 树形dp && 虚树 && 树分治 && 树上差分 && 树链剖分

    树的直径: 利用了树的直径的一个性质:距某个点最远的叶子节点一定是树的某一条直径的端点. 先从任意一顶点a出发,bfs找到离它最远的一个叶子顶点b,然后再从b出发bfs找到离b最远的顶点c,那么b和c ...

  10. POJ 1383题解(树的直径)(BFS)

    题面 Labyrinth Time Limit: 2000MS Memory Limit: 32768K Total Submissions: 4997 Accepted: 1861 Descript ...

随机推荐

  1. Mysql数据库概述

    阅读目录 引擎介绍 表介绍 创建表 查看表结构 mysql中的数据类型 表的完整性约束 修改表结构 删除表 多表结构的创建与分析 练习 返回顶部 引擎介绍 mysql中的存储引擎(https://ww ...

  2. 使用Micrisoft.net设计方案 前言

    前言 主要阐述23种设计模式在Microsoft.Net中的使用,以及使用设计模式创建后的对象如何使用.同是向我们传达3个理念,分别是: 1.  使用设计模式可以让程序更加灵活 2.  结构越复杂,意 ...

  3. DataTable的Select()方法

    DataRow[] partno = dtPack.Select("PK_SOHEAD = " + pk_sohead + " AND PART_NO = '" ...

  4. 利用Axis2默认口令安全漏洞入侵WebService网站

    近期,在黑吧安全网上关注了几则利用Axis2默认口令进行渗透测试的案例,大家的渗透思路基本一致,利用的技术工具也大致相同,我在总结这几则案例的基础之上进行了技术思路的拓展.黑吧安全网Axis2默认口令 ...

  5. python第三方库 pip 豆瓣源

    pip install xxx -i http://pypi.douban.com/simple/ xxx 为包名

  6. Linux强行踢用户

    首先who执行查看有几个终端在链接使用系统.如要踢出tty2 方法1: pkill -9 -t tty2 方法2: fuser -k /dev/tty2 fuser 指令 用途 使用文件或文件结构识别 ...

  7. VHDL之Aggregate

    Definition A basic operation that combines one or more values into a composite value of a record or ...

  8. 「Redis 笔记」数据类型

    REmote DIctionary Server(Redis),一个 key-value 存储系统. 数据类型 Redis 支持五种数据类型:string(字符串),hash(哈希),list(列表) ...

  9. 图像压缩Vs.压缩感知

    压缩感知科普文两则: 原文链接:http://www.cvchina.info/2010/06/08/compressed-sensing-2/ 这几天由于happyharry的辛勤劳动,大伙纷纷表示 ...

  10. 杭电 1012 u Calculate e【算阶乘】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1012 解题思路:对阶乘递归求和 反思:前面3个的输出格式需要注意,可以自己单独打印出来,也可以在for ...