Labyrinth
Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 4062   Accepted: 1529

Description

The northern part of the Pyramid contains a very large and complicated labyrinth. The labyrinth is divided into square blocks, each of them either filled by rock, or free. There is also a little hook on the floor in the center of every free block. The ACM have
found that two of the hooks must be connected by a rope that runs through the hooks in every block on the path between the connected ones. When the rope is fastened, a secret door opens. The problem is that we do not know which hooks to connect. That means
also that the neccessary length of the rope is unknown. Your task is to determine the maximum length of the rope we could need for a given labyrinth.

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers C and R (3 <= C,R <= 1000) indicating the number of columns and rows. Then exactly R lines follow,
each containing C characters. These characters specify the labyrinth. Each of them is either a hash mark (#) or a period (.). Hash marks represent rocks, periods are free blocks. It is possible to walk between neighbouring blocks only, where neighbouring blocks
are blocks sharing a common side. We cannot walk diagonally and we cannot step out of the labyrinth. 

The labyrinth is designed in such a way that there is exactly one path between any two free blocks. Consequently, if we find the proper hooks to connect, it is easy to find the right path connecting them.

Output

Your program must print exactly one line of output for each test case. The line must contain the sentence "Maximum rope length is X." where Xis the length of the longest path between any two free blocks, measured in blocks.

Sample Input

2
3 3
###
#.#
###
7 6
#######
#.#.###
#.#.###
#.#.#.#
#.....#
#######

Sample Output

Maximum rope length is 0.
Maximum rope length is 8.

Hint

Huge input, scanf is recommended. 

If you use recursion, maybe stack overflow. and now C++/c 's stack size is larger than G++/gcc

Source

寻找两个相差最远的‘.’,树的直径两次bfs,先找一个最长路,然后从端点开始继续搜
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
int dx[4]={0,0,1,-1};
int dy[4]={1,-1,0,0};
struct node
{
int x,y,step;
}temp,p;
int vis[1010][1010],sx,sy,ans,m,n;
char map[1010][1010];
void init()
{
memset(map,'\0',sizeof(map));
memset(vis,0,sizeof(vis));
ans=0;
sx=sy=0;
}
void getmap()
{
int flag=0;
for(int i=0;i<m;i++)
{
scanf("%s",map[i]);
for(int j=0;j<n&&!flag;j++)
{
if(map[i][j]=='.')
{
sx=i;
sy=j;
flag=1;
}
}
}
}
int judge(node s1)
{
if(s1.x<0||s1.x>=m||s1.y<0||s1.y>=n)
return 1;
if(map[s1.x][s1.y]=='#'||vis[s1.x][s1.y])
return 1;
return 0;
}
void bfs(int x,int y)
{
memset(vis,0,sizeof(vis));
queue<node>q;
p.x=sx;
p.y=sy;
p.step=0;
q.push(p);
vis[sx][sy]=1;
while(!q.empty())
{
p=q.front();
q.pop();
for(int i=0;i<4;i++)
{
temp.x=p.x+dx[i];
temp.y=p.y+dy[i];
if(judge(temp)) continue;
temp.step=p.step+1;
if(temp.step>ans)
{
ans=temp.step;
sx=temp.x;
sy=temp.y;
}
vis[temp.x][temp.y]=1;
q.push(temp);
}
}
}
void solve()
{
bfs(sx,sy);
bfs(sx,sy);
printf("Maximum rope length is %d.\n",ans);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
getmap();
solve();
}
return 0;
}

poj--1383--Labyrinth(树的直径)的更多相关文章

  1. poj 1383 Labyrinth【迷宫bfs+树的直径】

    Labyrinth Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 4004   Accepted: 1504 Descrip ...

  2. POJ 1383 Labyrinth (bfs 树的直径)

    Labyrinth 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/E Description The northern part ...

  3. poj 1383 Labyrinth

    题目连接 http://poj.org/problem?id=1383 Labyrinth Description The northern part of the Pyramid contains ...

  4. POJ 1985 Cow Marathon && POJ 1849 Two(树的直径)

    树的直径:树上的最长简单路径. 求解的方法是bfs或者dfs.先找任意一点,bfs或者dfs找出离他最远的那个点,那么这个点一定是该树直径的一个端点,记录下该端点,继续bfs或者dfs出来离他最远的一 ...

  5. POJ 1383 Labyrinth (树的直径求两点间最大距离)

    Description The northern part of the Pyramid contains a very large and complicated labyrinth. The la ...

  6. POJ 1985 求树的直径 两边搜OR DP

    Cow Marathon Description After hearing about the epidemic of obesity in the USA, Farmer John wants h ...

  7. Labyrinth 树的直径加DFS

    The northern part of the Pyramid contains a very large and complicated labyrinth. The labyrinth is d ...

  8. POJ 1849 Two(树的直径--树形DP)(好题)

    大致题意:在某个点派出两个点去遍历全部的边,花费为边的权值,求最少的花费 思路:这题关键好在这个模型和最长路模型之间的转换.能够转换得到,全部边遍历了两遍的总花费减去最长路的花费就是本题的答案,要思考 ...

  9. 算法笔记--树的直径 && 树形dp && 虚树 && 树分治 && 树上差分 && 树链剖分

    树的直径: 利用了树的直径的一个性质:距某个点最远的叶子节点一定是树的某一条直径的端点. 先从任意一顶点a出发,bfs找到离它最远的一个叶子顶点b,然后再从b出发bfs找到离b最远的顶点c,那么b和c ...

  10. POJ 1383题解(树的直径)(BFS)

    题面 Labyrinth Time Limit: 2000MS Memory Limit: 32768K Total Submissions: 4997 Accepted: 1861 Descript ...

随机推荐

  1. ADO.NET增删改

    static void Main1(string[] args) {添加造连接字符串string connstring = "server=.;database=mydb;user=sa;p ...

  2. Qt与OpenCV结合:图像显示

    参考链接: http://www.cnblogs.com/emouse/archive/2013/03/29/2988717.html 注意:为了防止min max 问题,要把opencv的包含放在包 ...

  3. jq遍历 下拉框

    var selectA1 = $("select[name=A1]"); //从A1下拉框中 搜索值 $(selectA1).children("option" ...

  4. html form表单追加input元素后在提交

    form.append(input); //input为对象 (设置name和val有效) $("#form1").submit();//提交事件

  5. Mysql重复数据查询置为空

    前两天产品有个需求,相同的商品因为价格不同而分开展示,但是明细还是算一条明细,具体区分展示出商品的价格和数量信息,其他重复的商品信息要置空. 需求并不难,用程序代码循环处理就可以了.但是后面涉及到打印 ...

  6. java中的标识符

    程序员自己定义的名称,例如类名,方法名,变量等等 标识符命名的规则 1.只能由字母(a-z,A-Z),数字(0-9),下划线(_)和美元符号($)组成 2.不能以数字开头 3.不能与关键字重名 4.严 ...

  7. [IOI2011]Race $O(nlog^{2}n)$ 做法

    这个应该还不是正解,明天看一下正解到底是什么... Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in&qu ...

  8. python实现定时发送消息

    #!/usr/bin/env python#-*- coding:utf-8 -*- @Author : wujf @Time:2018/8/21 15:59# 自动发送消息from threadin ...

  9. 莫烦大大TensorFlow学习笔记(8)----优化器

    一.TensorFlow中的优化器 tf.train.GradientDescentOptimizer:梯度下降算法 tf.train.AdadeltaOptimizer tf.train.Adagr ...

  10. int rc = -EINVAL是什么意思

    rc应该是return code的意思,将函数返回值rc初始化为-EINVAL,EINVAL由POSIX.1规范中的一个宏,一般通过包含C标准头文件errno.h,表示参数无效(invalid arg ...