D - Domination

Time Limit:8000MS     Memory Limit:131072KB     64bit IO Format:%lld & %llu

Description

Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with N rows and M columns.

Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominatedby the chess pieces. That means there is at least one chess piece in every row. Also, there is at least one chess piece in every column.

"That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help him.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

There are only two integers N and M (1 <= NM <= 50).

Output

For each test case, output the expectation number of days.

Any solution with a relative or absolute error of at most 10-8 will be accepted.

Sample Input

2
1 3
2 2

Sample Output

3.000000000000
2.666666666667

解题:比较简单的一道题,可惜学渣的dp能力太弱了,dp[i][j][k]表示已经覆盖了i行j列且使用了k颗棋子时的概率。。。。

注意转移,放一颗棋子后可能行和列的覆盖数不会增加,也有可能只增加了行,也有可能只增加了列,还有可能同时增加了行列的覆盖数。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#define LL long long
#define pii pair<int,int>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
double dp[maxn][maxn][maxn*maxn];
int main() {
int t,n,m;
scanf("%d",&t);
while(t--){
scanf("%d %d",&n,&m);
memset(dp,,sizeof(dp));
dp[][][] = ;
for(int i = ; i <= n; ++i){
for(int j = ; j <= m; ++j){
for(int k = max(i,j);k <= i*j; ++k){
double p1 = dp[i][j][k-]*(i*j - k + );//行列覆盖都不增加
double p2 = dp[i-][j][k-]*(n-i+)*j;//增加行
double p3 = dp[i][j-][k-]*i*(m - j + );//增加列
double p4 = dp[i-][j-][k-]*(n - i + )*(m - j + );//既增加行 又增加列
dp[i][j][k] = (p1 + p2 + p3 + p4)/(n*m - k + );
}
}
}
double ans = ;
for(int i = max(n,m); i <= n*m; ++i)
ans += dp[n][m][i]*i - dp[n][m][i-]*i;
printf("%.9f\n",ans);
}
return ;
}
 

ZOJ 3288 Domination的更多相关文章

  1. zoj 3288 Domination (可能dp)

    ///dp[i][j][k]代表i行j列件,并把一k的概率 ///dp[i][j][k]一种常见的方法有四种传输 ///1:dp[i-1][j][k-1] 可能 (n-(i-1))*j/(n*m-(k ...

  2. zoj 3822 Domination(dp)

    题目链接:zoj 3822 Domination 题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望. 解题思路:大白书上概率那一张有一 ...

  3. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  4. zoj 3822 Domination (可能性DP)

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  5. zoj 3822 Domination(2014牡丹江区域赛D称号)

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  6. ZOJ 3822 Domination 概率dp 难度:0

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  7. ZOJ 3822 Domination (三维概率DP)

    E - Domination Time Limit:8000MS     Memory Limit:131072KB     64bit IO Format:%lld & %llu Submi ...

  8. zoj 3822 Domination(2014牡丹江区域赛D题) (概率dp)

    3799567 2014-10-14 10:13:59                                                                     Acce ...

  9. zoj 3822 Domination 概率dp 2014牡丹江站D题

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

随机推荐

  1. C#--文件操作的一些技巧

    Using的特点 Using 打开什么,就自动关闭什么,using中包含的其他类是否关闭,using是不管的 XML文档读取 重点:必须是标准的xml文档,否则会出错 string xmlxx = @ ...

  2. BA-siemens-insight_lenum点

    lenum点特性 lenum点有如下特点 如果状态字是自定义的,只能在bacnet / ip的aln层使用 如果想在ms/tp层使用lenum的功能,就必须将system profile中bacnet ...

  3. jqury+animation+setTimeOut实现渐变显示与隐藏动画

    初始效果 实现效果 1,编写HTMl结构代码 <div class="box"> <i class="icon"></i> ...

  4. 【转】一分钟读懂互联网广告竞价策略GFP+GSP+VCG

    参考这篇文章: http://ju.outofmemory.cn/entry/116780 一分钟读懂互联网广告竞价策略GFP+GSP+VCG 两个广告位,三家广告主竞价,广告平台究竟应该制定广告竞价 ...

  5. 怎样改动 VC6.0 4.0 2010 打印预览界面上的文字

    前言:尽管早已下决心不再碰微软的东西,但手头的项目还得须要维护. 遇到问题还能解决. 问题由来: 之前的软件开发是基于中文环境开发的,建立项目的时候,选择了中文,为了方便客户使用.我们使用了静态编译的 ...

  6. STL之效率比較

    1.vector 变长一维数组,连续存放的内存块,有保留内存.堆中分配内存: 支持[]操作,高效率的随机訪问: 在最后添加元素时,一般不须要分配内存空间,速度快:在中间或開始操作元素时要进行内存拷贝效 ...

  7. Android调用第三方App

    private List<Map<String, Object>> list = null; private PackageManager mPackageManager; p ...

  8. shell文本过滤编程(十一):paste命令

    [版权声明:转载请保留出处:blog.csdn.net/gentleliu. Mail:shallnew at 163 dot com] 从字面上能够看出.paste命令和cut命令功能相反,cut命 ...

  9. 均匀分布(uniform distribution)期望的最大似然估计(maximum likelihood estimation)

    maximum estimator method more known as MLE of a uniform distribution [0,θ] 区间上的均匀分布为例,独立同分布地采样样本 x1, ...

  10. java.io.IOException: Cannot find any registered HttpDestinationFactory from the Bus.

    转自:https://blog.csdn.net/u012849872/article/details/51037374