Yarn上常驻Spark-Streaming程序调优
对于长时间运行的Spark Streaming作业,一旦提交到YARN群集便需要永久运行,直到有意停止。任何中断都会引起严重的处理延迟,并可能导致数据丢失或重复。YARN和Apache Spark都不是为了执行长时间运行的服务而设计的。但是,它们已经成功地满足了近实时数据处理作业的常驻需求。成功并不一定意味着没有技术挑战。
这篇博客总结了在安全的YARN集群上,运行一个关键任务且长时间的Spark Streaming作业的经验。您将学习如何将Spark Streaming应用程序提交到YARN群集,以避免在值班时候的不眠之夜。
Fault tolerance
在YARN集群模式下,Spark驱动程序与Application Master(应用程序分配的第一个YARN容器)在同一容器中运行。此过程负责从YARN 驱动应用程序和请求资源(Spark执行程序)。重要的是,Application Master消除了在应用程序生命周期中运行的任何其他进程的需要。即使一个提交Spark Streaming作业的边缘Hadoop节点失败,应用程序也不会受到影响。
要以集群模式运行Spark Streaming应用程序,请确保为spark-submit命令提供以下参数:
spark-submit --master yarn --deploy-mode cluster
由于Spark驱动程序和Application Master共享一个JVM,Spark驱动程序中的任何错误都会阻止我们长期运行的工作。幸运的是,可以配置重新运行应用程序的最大尝试次数。设置比默认值2更高的值是合理的(从YARN集群属性yarn.resourcemanager.am.max尝试中导出)。对我来说,4工作相当好,即使失败的原因是永久性的,较高的值也可能导致不必要的重新启动。
spark-submit --master yarn --deploy-mode cluster \
--conf spark.yarn.maxAppAttempts=4
如果应用程序运行数天或数周,而不重新启动或重新部署在高度使用的群集上,则可能在几个小时内耗尽4次尝试。为了避免这种情况,尝试计数器应该在每个小时都重置。
spark-submit --master yarn --deploy-mode cluster \
--conf spark.yarn.maxAppAttempts=4 \
--conf spark.yarn.am.attemptFailuresValidityInterval=1h
另一个重要的设置是在应用程序发生故障之前executor失败的最大数量。默认情况下是max(2 * num executors,3),非常适合批处理作业,但不适用于长时间运行的作业。该属性具有相应的有效期间,也应设置。
spark-submit --master yarn --deploy-mode cluster \
--conf spark.yarn.maxAppAttempts=4 \
--conf spark.yarn.am.attemptFailuresValidityInterval=1h \
--conf spark.yarn.max.executor.failures={8 * num_executors} \
--conf spark.yarn.executor.failuresValidityInterval=1h
对于长时间运行的作业,您也可以考虑在放弃作业之前提高任务失败的最大数量。默认情况下,任务将重试4次,然后作业失败。
spark-submit --master yarn --deploy-mode cluster \
--conf spark.yarn.maxAppAttempts=4 \
--conf spark.yarn.am.attemptFailuresValidityInterval=1h \
--conf spark.yarn.max.executor.failures={8 * num_executors} \
--conf spark.yarn.executor.failuresValidityInterval=1h \
--conf spark.task.maxFailures=8
Performance
当Spark Streaming应用程序提交到集群时,必须定义运行作业的YARN队列。我强烈建议使用YARN Capacity Scheduler并将长时间运行的作业提交到单独的队列。没有一个单独的YARN队列,您的长时间运行的工作迟早将被的大量Hive查询抢占。
spark-submit --master yarn --deploy-mode cluster \
--conf spark.yarn.maxAppAttempts=4 \
--conf spark.yarn.am.attemptFailuresValidityInterval=1h \
--conf spark.yarn.max.executor.failures={8 * num_executors} \
--conf spark.yarn.executor.failuresValidityInterval=1h \
--conf spark.task.maxFailures=8 \
--queue realtime_queue
Spark Streaming工作的另一个重要问题是保持处理时间的稳定性和高度可预测性。处理时间应保持在批次持续时间以下以避免延误。我发现Spark的推测执行有很多帮助,特别是在繁忙的群集中。当启用推测性执行时,批处理时间更加稳定。只有当Spark操作是幂等时,才能启用推测模式。
spark-submit --master yarn --deploy-mode cluster \
--conf spark.yarn.maxAppAttempts=4 \
--conf spark.yarn.am.attemptFailuresValidityInterval=1h \
--conf spark.yarn.max.executor.failures={8 * num_executors} \
--conf spark.yarn.executor.failuresValidityInterval=1h \
--conf spark.task.maxFailures=8 \
--queue realtime_queue \
--conf spark.speculation=true
Security
在安全的HDFS群集上,长时间运行的Spark Streaming作业由于Kerberos票据到期而失败。没有其他设置,当Spark Streaming作业提交到集群时,会发布Kerberos票证。当票证到期时Spark Streaming作业不能再从HDFS写入或读取数据。
在理论上(基于文档),应该将Kerberos主体和keytab作为spark-submit命令传递:
spark-submit --master yarn --deploy-mode cluster \
--conf spark.yarn.maxAppAttempts=4 \
--conf spark.yarn.am.attemptFailuresValidityInterval=1h \
--conf spark.yarn.max.executor.failures={8 * num_executors} \
--conf spark.yarn.executor.failuresValidityInterval=1h \
--conf spark.task.maxFailures=8 \
--queue realtime_queue \
--conf spark.speculation=true \
--principal user/hostname@domain \
--keytab /path/to/foo.keytab
实际上,由于几个错误(HDFS-9276, SPARK-11182)必须禁用HDFS缓存。如果没有,Spark将无法从HDFS上的文件读取更新的令牌。
spark-submit --master yarn --deploy-mode cluster \
--conf spark.yarn.maxAppAttempts=4 \
--conf spark.yarn.am.attemptFailuresValidityInterval=1h \
--conf spark.yarn.max.executor.failures={8 * num_executors} \
--conf spark.yarn.executor.failuresValidityInterval=1h \
--conf spark.task.maxFailures=8 \
--queue realtime_queue \
--conf spark.speculation=true \
--principal user/hostname@domain \
--keytab /path/to/foo.keytab \
--conf spark.hadoop.fs.hdfs.impl.disable.cache=true
Mark Grover指出,这些错误只影响在HA模式下配置了NameNodes的HDFS集群。谢谢,马克
Logging
访问Spark应用程序日志的最简单方法是配置Log4j控制台追加程序,等待应用程序终止并使用yarn logs -applicationId [applicationId]命令。不幸的是终止长时间运行的Spark Streaming作业来访问日志是不可行的。
我建议安装和配置Elastic,Logstash和Kibana(ELK套装)。ELK的安装和配置是超出了这篇博客的范围,但请记住记录以下上下文字段:
- YARN application id
- YARN container hostname
- Executor id (Spark driver is always 000001, Spark executors start from 000002)
- YARN attempt (to check how many times Spark driver has been restarted)
Log4j配置使用Logstash特定的appender和布局定义应该传递给spark-submit命令:
spark-submit --master yarn --deploy-mode cluster \
--conf spark.yarn.maxAppAttempts=4 \
--conf spark.yarn.am.attemptFailuresValidityInterval=1h \
--conf spark.yarn.max.executor.failures={8 * num_executors} \
--conf spark.yarn.executor.failuresValidityInterval=1h \
--conf spark.task.maxFailures=8 \
--queue realtime_queue \
--conf spark.speculation=true \
--principal user/hostname@domain \
--keytab /path/to/foo.keytab \
--conf spark.hadoop.fs.hdfs.impl.disable.cache=true \
--conf spark.driver.extraJavaOptions=-Dlog4j.configuration=file:log4j.properties \
--conf spark.executor.extraJavaOptions=-Dlog4j.configuration=file:log4j.properties \
--files /path/to/log4j.properties
最后,Spark Job的Kibana仪表板可能如下所示:
Monitoring
长时间运行的工作全天候运行,所以了解历史指标很重要。Spark UI仅在有限数量的批次中保留统计信息,并且在重新启动后,所有度量标准都消失了。再次,需要外部工具。我建议安装Graphite用于收集指标和Grafana来建立仪表板。
首先,Spark需要配置为将指标报告给Graphite,准备metrics.properties文件:
*.sink.graphite.class=org.apache.spark.metrics.sink.GraphiteSink
*.sink.graphite.host=[hostname]
*.sink.graphite.port=[port]
*.sink.graphite.prefix=some_meaningful_name driver.source.jvm.class=org.apache.spark.metrics.source.JvmSource
executor.source.jvm.class=org.apache.spark.metrics.source.JvmSource
Graceful stop
最后一个难题是如何以优雅的方式停止部署在YARN上的Spark Streaming应用程序。停止(甚至杀死)YARN应用程序的标准方法是使用命令yarn application -kill [applicationId]。这个命令会停止Spark Streaming应用程序,但这可能发生在批处理中。因此,如果该作业是从Kafka读取数据然后在HDFS上保存处理结果,并最终提交Kafka偏移量,当作业在提交偏移之前停止工作时,您应该预见到HDFS会有重复的数据。
解决优雅关机问题的第一个尝试是在关闭程序时回调Spark Streaming Context的停止方法。
sys.addShutdownHook {
streamingContext.stop(stopSparkContext = true, stopGracefully = true)
}
令人失望的是,由于Spark应用程序几乎立即被杀死,一个退出回调函数来不及完成已启动的批处理任务。此外,不能保证JVM会调用shutdown hook。
在撰写本博客文章时,唯一确认的YARN Spark Streaming应用程序的确切方法是通知应用程序关于计划关闭,然后以编程方式停止流式传输(但不是关闭挂钩)。命令yarn application -kill 如果通知应用程序在定义的超时后没有停止,则应该仅用作最后手段。
可以使用HDFS上的标记文件(最简单的方法)或使用驱动程序上公开的简单Socket / HTTP端点(复杂方式)通知应用程序。
因为我喜欢KISS原理,下面你可以找到shell脚本伪代码,用于启动/停止Spark Streaming应用程序使用标记文件:
start() {
hdfs dfs -touchz /path/to/marker/my_job_unique_name
spark-submit ...
} stop() {
hdfs dfs -rm /path/to/marker/my_job_unique_name
force_kill=true
application_id=$(yarn application -list | grep -oe "application_[0-9]*_[0-9]*"`)
for i in `seq 1 10`; do
application_status=$(yarn application -status ${application_id} | grep "State : \(RUNNING\|ACCEPTED\)")
if [ -n "$application_status" ]; then
sleep 60s
else
force_kill=false
break
fi
done
$force_kill && yarn application -kill ${application_id}
}
在Spark Streaming应用程序中,后台线程应该监视标记文件,当文件消失时停止上下文调用
streamingContext.stop(stopSparkContext = true, stopGracefully = true).
Summary
可以看到,部署在YARN上的关键任务Spark Streaming应用程序的配置相当复杂。以上提出的技术,由一些非常聪明的开发人员经过漫长而冗长乏味的迭代学习。最终,部署在高可用的YARN集群上的长期运行的Spark Streaming应用非常稳定。
Yarn上常驻Spark-Streaming程序调优的更多相关文章
- Spark Streaming性能调优详解
Spark Streaming性能调优详解 Spark 2015-04-28 7:43:05 7896℃ 0评论 分享到微博 下载为PDF 2014 Spark亚太峰会会议资料下载.< ...
- Spark Streaming性能调优详解(转)
原文链接:Spark Streaming性能调优详解 Spark Streaming提供了高效便捷的流式处理模式,但是在有些场景下,使用默认的配置达不到最优,甚至无法实时处理来自外部的数据,这时候我们 ...
- Spark Streaming性能调优
数据接收并行度调优(一) 通过网络接收数据时(比如Kafka.Flume),会将数据反序列化,并存储在Spark的内存中.如果数据接收称为系统的瓶颈,那么可以考虑并行化数据接收.每一个输入DStrea ...
- Spark 应用程序调优
对于很多刚接触Spark的人来说,可能主要关心数据处理的逻辑,而对于如何高效运行Spark应用程序了解较少.由于Spark是一种分布式内存计算框架,其性能往往受限于CPU.内存.网络等多方面的因素,对 ...
- 【译】Yarn上常驻Spark-Streaming程序调优
作者从容错.性能等方面优化了长时间运行在yarn上的spark-Streaming作业 对于长时间运行的Spark Streaming作业,一旦提交到YARN群集便需要永久运行,直到有意停止.任何中断 ...
- 【Spark深入学习 -14】Spark应用经验与程序调优
----本节内容------- 1.遗留问题解答 2.Spark调优初体验 2.1 利用WebUI分析程序瓶颈 2.2 设置合适的资源 2.3 调整任务的并发度 2.4 修改存储格式 3.Spark调 ...
- Spark:性能调优
来自:http://blog.csdn.net/u012102306/article/details/51637366 资源参数调优 了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理 ...
- Spark的性能调优杂谈
下面这些关于Spark的性能调优项,有的是来自官方的,有的是来自别的的工程师,有的则是我自己总结的. 基本概念和原则 <1> 每一台host上面可以并行N个worker,每一个worke ...
- spark submit参数调优
在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置 ...
随机推荐
- 个人永久性免费-Excel催化剂功能第101波-批量替换功能(增加正则及高性能替换能力)
数据处理无小事,正如没有人活在真空理想环境一下,在数据分析过程中,也没有那么真空理想化的数据源可以使用,数据处理占据数据分析的80%的时间,每一个小小的改善,获益都良多.Excel查找替换,有其局限性 ...
- Go语言圣经习题练习_1.6并发获取多个URL
练习 1.10: 找一个数据量比较大的网站,用本小节中的程序调研网站的缓存策略,对每个URL执行两遍请求,查看两次时间是否有较大的差别,并且每次获取到的响应内容是否一致,修改本节中的程序,将响应结果输 ...
- WebGL着色器32位浮点数精度损失问题
问题 WebGL浮点数精度最大的问题是就是因为js是64位精度的,js往着色器里面穿的时候只能是32位浮点数,有效数是8位,精度丢失比较严重. 这篇文章里讲了一些处理方式,但是视坐标这种方式放在我们的 ...
- CSS和html如何结合起来——选择符及优先级
1.选择符 兼容性 统配选择符 * 元素选择符 body 类选择符 .class id选择符 #id 包含原则符 p strong (所有 ...
- Jboss反序列化漏洞复现(CVE-2017-12149)
Jboss反序列化漏洞复现(CVE-2017-12149) 一.漏洞描述 该漏洞为Java反序列化错误类型,存在于jboss的HttpInvoker组件中的ReadOnlyAccessFilter过滤 ...
- C# sql 批量插入数据库的语句
//执行DataTable数据导入 public static int UpdateDt(string strConn, DataTable dt) { try { string tablaName ...
- 统计学习方法6—logistic回归和最大熵模型
目录 logistic回归和最大熵模型 1. logistic回归模型 1.1 logistic分布 1.2 二项logistic回归模型 1.3 模型参数估计 2. 最大熵模型 2.1 最大熵原理 ...
- hdoj 1753 (Java)
刚刚开始用Java,代码难免不够简洁. import java.math.BigDecimal; import java.util.Scanner; public class Main { publi ...
- wscript.shell 使用
<%@ Page Language="VB" validateRequest = "false" aspcompat = "true" ...
- c#小灶——输出语句
前面我我们学习了如何在控制台输出一句话,今天我们学习一下更详细的输出方式. Console.WriteLine();和Console.Write(); 我们来看一下下面几行代码, using Syst ...