导言

看了 动态规划(https://www.cnblogs.com/fivestudy/p/11855853.html)的帖子,觉得写的很好,记录下来。

动态规划问题一直是算法面试当中的重点和难点,并且动态规划这种通过空间换取时间的算法思想在实际的工作中也会被频繁用到,这篇文章的目的主要是解释清楚 什么是动态规划,还有就是面对一道动态规划问题,一般的 思考步骤 以及其中的注意事项等等,最后通过几道题目将理论和实践结合。

用一句话解释动态规划就是 “记住你之前做过的事”,如果更准确些,其实是 “记住你之前得到的答案”。

示例

LeetCode 第70题爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

题目解析

爬楼梯,可以爬一步也可以爬两步,问有多少种不同的方式到达终点,我们按照上面提到的四个步骤进行分析:

  • 问题拆解:

    我们到达第 n 个楼梯可以从第 n - 1 个楼梯和第 n - 2 个楼梯到达,因此第 n 个问题可以拆解成第 n - 1 个问题和第 n - 2 个问题,第 n - 1 个问题和第 n - 2 个问题又可以继续往下拆,直到第 0 个问题,也就是第 0 个楼梯 (起点)

  • 状态定义

    “问题拆解” 中已经提到了,第 n 个楼梯会和第 n - 1 和第 n - 2 个楼梯有关联,那么具体的联系是什么呢?你可以这样思考,第 n - 1 个问题里面的答案其实是从起点到达第 n - 1 个楼梯的路径总数,n - 2 同理,从第 n - 1 个楼梯可以到达第 n 个楼梯,从第 n - 2 也可以,并且路径没有重复,因此我们可以把第 i 个状态定义为 “从起点到达第 i 个楼梯的路径总数”,状态之间的联系其实是相加的关系。

  • 递推方程

    “状态定义” 中我们已经定义好了状态,也知道第 i 个状态可以由第 i - 1 个状态和第 i - 2 个状态通过相加得到,因此递推方程就出来了 dp[i] = dp[i - 1] + dp[i - 2]

  • 实现

    你其实可以从递推方程看到,我们需要有一个初始值来方便我们计算,起始位置不需要移动 dp[0] = 0,第 1 层楼梯只能从起始位置到达,因此 dp[1] = 1,第 2 层楼梯可以从起始位置和第 1 层楼梯到达,因此 dp[2] = 2,有了这些初始值,后面就可以通过这几个初始值进行递推得到。

参考代码1:

def getn(n):
if n == 1:
return 1 dp = [0]*(n+1)
dp[1] = 1
dp[2] = 2
for i in range(3, n+1):
dp[i] = dp[i-1] + dp[i-2]
return dp[n]

参考代码2:

生成器版本

def climbStairs(max):
n, a, b = 0, 1, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1

参考代码3:

实际上这个问题是斐波那契数列的变形,所以我们可以写出这样非常简洁的代码

def cli(n):
"""
:type n: int
:rtype: int
"""
x, y = 1, 1
for _ in range(n):
x, y = y, x + y return x

LeetCode 第70题动态规划算法的更多相关文章

  1. LeetCode第70题:爬楼梯

    问题描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解 ...

  2. 70. Climbing Stairs【leetcode】递归,动态规划,java,算法

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  3. 经典算法题每日演练——第十七题 Dijkstra算法

    原文:经典算法题每日演练--第十七题 Dijkstra算法 或许在生活中,经常会碰到针对某一个问题,在众多的限制条件下,如何去寻找一个最优解?可能大家想到了很多诸如“线性规划”,“动态规划” 这些经典 ...

  4. [LeetCode] 系统刷题5_Dynamic Programming

    Dynamic Programming 实际上是[LeetCode] 系统刷题4_Binary Tree & Divide and Conquer的基础上,加上记忆化的过程.就是说,如果这个题 ...

  5. 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略

    原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

  6. Leetcode之70. Climbing Stairs Easy

    Leetcode 70 Climbing Stairs Easy https://leetcode.com/problems/climbing-stairs/ You are climbing a s ...

  7. leetcode top-100-liked-questions刷题总结

    一.起因 宅在家中,不知该做点什么.没有很好的想法,自己一直想提升技能,语言基础自不必言,数据结构还算熟悉,算法能力一般.于是乎,就去刷一通题. 刷题平台有很多,我选择了在leetcode进行刷题.回 ...

  8. Leetcode 12,452,455-贪心算法

    Leetcode第12题,整数转罗马数字,难度中等 整个题目比较好理解,难度也不大,就算不过脑子,用一串if也基本上可以解决问题,比如 /** 执行用时:6ms,在所有 Java 提交中击败了52.6 ...

  9. LeetCode 62,从动态规划想到更好的解法

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题第36篇文章,我们一起来看下LeetCode的62题,Unique Paths. 题意 其实这是一道老掉牙的题目了 ...

随机推荐

  1. python之with语句结合上下文管理器

    所谓上下文管理器即在一个类中重写了__enter__方法和__exit__方法的类就可以成为上下文管理器类. 我们可以通过with语句结合上下文管理器简化一些操作. 使用with语句结合自定义上下文管 ...

  2. 3年Java开发10面阿里、京东、拼多多

    拼多多 地点:2号线娄山关路地铁站(金虹桥国际中心) 环境:新的写字楼,环境很好,有种高大上的感觉.大厅进入后需要登记,然后进闸机.电梯是需要刷卡才能使用的.会议室都是用城市名称命名,例如杭州.香港等 ...

  3. java面试题干货126-170

    这部分主要是开源Java EE框架方面的内容,包括Hibernate.MyBatis.Spring.Spring MVC等,由于Struts 2已经是明日黄花,在这里就不讨论Struts 2的面试题, ...

  4. 从《彩色圆环》一题探讨一类环上dp的解法

    清橙A1202 bzoj2201 bsoj4074 试题来源 2010中国国家集训队命题答辩 问题描述 小A喜欢收集宝物.一天他得到了一个圆环,圆环上有N颗彩色宝石,闪闪发光.小A很爱惜这个圆环,天天 ...

  5. ASP.NET MVC项目中EntityFramework"代码优先方法"的使用步骤

    EF提供了三种方式来实现项目,分别是: (1)代码优先方法: (2)模型优先方法: (3)数据库优先方法: 本篇主要记录在Vs2010环境下使用代码优先的方式实现数据库和后端代码数据交互,语言为C#, ...

  6. 百度大脑UNIT3.0详解之数据生产工具DataKit

    在智能对话项目搭建的过程中,高效筛选.处理对话日志并将其转化为新的训练数据,是对话系统效果持续提升的重要环节,也是当前开发者面临的难题之一.为此百度大脑UNIT推出学习反馈闭环机制,提供数据获取.辅助 ...

  7. 如何编写一个工程文件夹下通用的Makefile

    新建工程文件夹,在里面新建 bsp.imx6ul.obj 和project 这 3 个文件夹,完成以后如图所示: 新建的工程根目录文件夹 其中 bsp 用来存放驱动文件:imx6ul 用来存放跟芯片有 ...

  8. 牛客集训 湖南省赛E题 Grid 动态开点线段树

    国庆牛客集训的题,正好准备好好训练线段树,想起来就补一下. 题意很简单,两种操作行合并或者列合并,每个操作后计算有多少个子块. 这题应该先推导公式,行操作或者列操作只有一种的时候,很简单,总数就是n* ...

  9. 求连通块个数 - BFS、DFS、并查集实现

    本文基于leetcode的200.岛屿数量(题目

  10. 【AGC028D】Chord

    Problem Description 给定一个圆,圆上均等地放着 \(2n\) 个点,已有 \(k\) 对点之间连好了边,从中选择剩下 \(n-k\) 对点随意连边. 求所有连边方案中,联通块的个数 ...