P5369 [PKUSC2018]最大前缀和
状态压缩
P5369
题意:求所有排列下的最大前缀和之和
一步转化: 求最大前缀和的前缀由数集S组成的方案数, 统计答案时直接乘上sum(S)即可
考虑最大前缀和的性质:
设最大前缀和为sum[i]
- 到i的后缀均为正数
- i后的前缀均为负数
令sum[i] = 集合 i 内所有数的和。
令f[i] = 集合 i内的数组成的排列,最大前缀和 = sum[i]的方案数。
令g[i] = 集合 i内的数组成的排列,所有的最大前缀和都 < 0 的方案数。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N = 25;
const int P = 998244353;
int n, a[N];
int f[1050050], g[1050050];
int sum[1050050];
inline int to(int x) {
return 1 << x;
}
int main() {
cin >> n; int all = to(n) - 1;
for (int i = 1;i <= n; i++)
cin >> a[i], f[to(i-1)] = 1, sum[to(i-1)] = a[i];
for (int i = 1;i <= all; i++)
sum[i] = sum[(i & -i)] + sum[i ^ (i & -i)];
g[0] = 1;
for (int i = 0;i < all; i++) {
if (sum[i] >= 0) {
for (int j = 1;j <= n; j++)
if (!(i & to(j-1)))
f[i | to(j-1)] = ((long long)f[i] + f[i | to(j-1)]) % P;
}
else {
for (int j = 1;j <= n; j++)
if (i & (to(j-1)))
g[i] = ((long long)g[i] + g[i ^ to(j-1)]) % P;
}
}
long long ans = 0;
for (int i = 1;i <= all; i++)
ans = (ans + (long long)f[i] * g[all^i] % P * sum[i] % P) % P;
cout << (ans % P + P) % P << endl;
return 0;
}
P5369 [PKUSC2018]最大前缀和的更多相关文章
- 洛谷P5369 [PKUSC2018]最大前缀和 [DP]
传送门 思路 这么一道签到题竟然没切掉真是丢人呢-- 首先有一个\(O(3^n)\)的SB方法,记录\(dp_{S,T}\)表示已经填进去了\(S\),当前最大前缀和集合为\(T\),随便转移.太简单 ...
- [PKUSC2018]最大前缀和
[PKUSC2018]最大前缀和 题目大意: 有\(n(n\le20)\)个数\(A_i(|A_i|\le10^9)\).求这\(n\)个数在随机打乱后最大前缀和的期望值与\(n!\)的积在模\(99 ...
- BZOJ_5369_[Pkusc2018]最大前缀和_状压DP
BZOJ_5369_[Pkusc2018]最大前缀和_状压DP Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于 ...
- [PKUSC2018]最大前缀和——状压DP
题目链接: [PKUSC2018]最大前缀和 设$f[S]$表示二进制状态为$S$的序列,任意前缀和都小于等于$0$的方案数. 设$g[S]$表示二进制状态为$S$的序列是整个序列的最大前缀和的方案数 ...
- LOJ6433 [PKUSC2018] 最大前缀和 【状压DP】
题目分析: 容易想到若集合$S$为前缀时,$S$外的所有元素的排列的前缀是小于$0$的,DP可以做到,令排列前缀个数小于0的是g[S]. 令f[S]表示$S$是前缀,转移可以通过在前面插入元素完成. ...
- BZOJ5369:[PKUSC2018]最大前缀和(状压DP)
Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...
- BZOJ5369 [Pkusc2018]最大前缀和
题意 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C是一个非常有自知之 ...
- bzoj 5369: [Pkusc2018]最大前缀和
Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...
- [PKUSC2018]最大前缀和(DP)
题意:求一个序列随机打乱后最大前缀和的期望. 考场上发现不管怎么设状态都写不出来,实际上只要稍微转换一下就好了. 一个前缀[1..k]是最大前缀,当且仅当前面的所有后缀[k-1,k],[k-2,k], ...
随机推荐
- JSONP跨域的script标签请求为什么不受同源策略的限制?
在复习跨域的时候,复习到了JSONP跨域,大家都知道JSONP跨域是通过动态创建script标签,然后通过其src属性进行跨域请求的,前端需要一个数据处理的回调函数,而服务端需要配合执行回调函数,放入 ...
- QFramework 使用指南 2020(七):Res Kit (1)概述与基本使用
在上一篇,我们刚刚结束了 脚本生成专题,我们知道 QF 提供了两种脚本生成模式,一种是 ViewController + Bind ,另一种是 UI Kit 模式. 本来打算,介绍完 ViewCont ...
- Codeforces Round #504 E - Down or Right 交互题
1023E 题意: 交互题.在一个有障碍地图中,问如何走才能从(1,1)走到(n,n),只能向右或者向左走.每次询问两个点,回复你这两个点能不能走通. 思路: 只用最多2*n-2次询问.从(1,1), ...
- UVA 11294 wedding 2-sat
可以把一对夫妇当成一个节点,然后拆点的话,h和w分别为真和假,然后直接按照题目中说的建图染色即可 #include <iostream> #include <cstdio> # ...
- 背包形动态规划 fjutoj2375 金明的预算方案
金明的预算方案 TimeLimit:1000MS MemoryLimit:128MB 64-bit integer IO format:%lld Problem Description 金明今天 ...
- POJ 2491 Scavenger Hunt map
Scavenger Hunt Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2848 Accepted: 1553 De ...
- html/css中相对定位relative和绝对定位absolute的用法
一.相对定位(position:relative) 1.相对定位:将盒子的position属性设置为relative:可通过left.top.right.bottom设置偏移量. 相对定位基础用法示例 ...
- 弄懂goroutine调度原理
goroutine简介 golang语言作者Rob Pike说,"Goroutine是一个与其他goroutines 并发运行在同一地址空间的Go函数或方法.一个运行的程序由一个或更多个go ...
- android.intent.category.BROWSABLE
参考: http://blog.csdn.net/annkie/article/details/8349626 http://xiechengfa.iteye.com/blog/1004991 BRO ...
- Tomcat运行机制
Tomcat其实就是一个servlet的容器,因此,它在运行过程中,首先要做以下事情: 1.实现servlet api规范.如request.response.cookie.session等,容器对其 ...