本文为3Blue1Brown神经网络课程讲解第二部分《Gradient descent, how neural networks learn 》的学习笔记,观看地址:www.bilibili.com/video/av16144388前文我们已经搭建了一个包含两个隐藏层的神经网络,我们需要这样一种算法:网络得到训练数据后,算法会调整所有的权重和偏置值,提高网络对训练数据的表现。我们还希望这种分层结构可以举一反三,识别其他图像。训练好网络后,再给它未见过的带标记的数据作为测试,这样就能知道新图像分类的准确度。

这实际上就是找某个函数的最小值,在一开始,我们会完全随机地初始化所有的权重和偏置值。可想而知,这个网络对于给定的训练示例,会表现得非常糟糕。例如输入一个3的图像,理想状态应该是输出层3这个点最亮。可是实际情况并不是这样。这是就需定义一个代价函数。

网络可以对图像正确分类时,这个平方和就比较小,反之就很大。接下来就要考虑几万个训练样本中代价的平均值。

神经网络本身是个函数,它有784个输入值,10个输出,13000多个参数。

代价函数则要再抽象一层,13000多个权重和偏置值作为他的输入,输出是单个数值,表示参数的表现优劣程度。

代价函数取决于网络对上万个训练数据的综合表现,但是我们还需要告诉网络该如何改变这些权重和偏置值,让其表现更好。为了简化问题,我们先不去想一个有13000多个变量的函数,而考虑简单的一元函数,只有一个输入变量,只输出一个数字。

学过微积分的都知道,有时你可以直接算出这个最小值,不过函数很复杂的话就不一定能写出,而我们这个超复杂的13000元的代价函数,就更加不可能做到了。一个灵活的技巧是:以下图为例,先随便挑一个输入值,找到函数在这里的斜率,斜率为正就向左走,斜率为负就向右走,你就会逼近函数的某个局部最小值。(其实是沿着负梯度方向,函数减少的最快)

但由于不知道一开始输入值在哪里,最后你可能会落到许多不同的坑里,而且无法保证你落到的局部最小值就是代价函数的全局最小值。值得一提的是,如果每步的步长与斜率成比例,那么在最小值附近斜率会越来越平缓,每步会越来越小,这样可以防止调过头。

我们想象一个更复杂的两个输入一个输出的二元函数,代价函数是图中右侧的红色曲面。在输入空间被沿着哪个方向走,才能使输出结果下降最快?

在多元微积分领域,函数梯度指的是函数的最陡增长方向,沿着其相反的方向,函数值下降的最快,梯度向量的长度代表了最陡的斜坡的到底有多陡峭。

让函数值最小的算法其实就是先计算梯度,在按反方向走一小步,然后循环。处理13000个输入的函数也是这个道理。

只是把这些权重、偏置都放在一个列向量中,代价函数的负梯度也是一个向量。负梯度指出了在这个函数输入空间内,具体如何改变每一项参数,才能让让代价函数的值下降的最快。

对于这个我们设计的神经网络的代价函数,更新权重和偏置来降低代价函数的值,意味着输入训练集的每一份样本的输出,都会越来越接近真实结果。又因为我们选择的是所有训练样本代价函数的平均值,所以最小化即对所有样本得到的总体结果会更好。

当我们提到让网络学习,实质上就是让代价函数的值最小。代价函数有必要是平滑的,这样我们才可以挪动以找到全局最小值,这也就是为什么人工神经元的激活值是连续的。到这里,我们终于引出了梯度下降法的定义:

负梯度内每一项值的正负号告诉我们输入向量对应该调大还是调小,每一项的相对大小也告诉了我们哪个值影响更大,改变哪个参数值,性价比最高。

训练后的神经网络就可以进行数字识别了,但是当输入是一个噪音图片时,神经网络却仍很自信的把它识别成一个数字。换句话说,即使网络学会了如何识别数字,但是它却不会自己写数字。原因就在于网络的训练被限制在很窄的框架内,对于第一层网络,它的视角整个宇宙都是由小网格内清晰定义的静止数字组成的,它的代价函数则会促使它对最后的判断有绝对的自信。研究越深,你就会发现,神经网络没有那么智能。

本节完!下节课我们学习3Blue1Brown关于神经网络的第3部分《偏导数和反向传播法》。

100天搞定机器学习|Day36用有趣的方式解释梯度下降算法的更多相关文章

  1. 100天搞定机器学习|day37 无公式理解反向传播算法之精髓

     100天搞定机器学习(Day1-34) 100天搞定机器学习|Day35 深度学习之神经网络的结构 100天搞定机器学习|Day36 深度学习之梯度下降算法 本篇为100天搞定机器学习之第37天,亦 ...

  2. 100天搞定机器学习|day39 Tensorflow Keras手写数字识别

    提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edge ...

  3. 100天搞定机器学习|day40-42 Tensorflow Keras识别猫狗

    100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0. ...

  4. 100天搞定机器学习|Day7 K-NN

    最近事情无比之多,换了工作.组队参加了一个比赛.和朋友搞了一些小项目,公号荒废许久.坚持是多么重要,又是多么艰难,目前事情都告一段落,我们继续100天搞定机器学习系列.想要继续做这个是因为,一方面在具 ...

  5. 100天搞定机器学习|Day11 实现KNN

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  6. 100天搞定机器学习|Day8 逻辑回归的数学原理

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  7. 100天搞定机器学习|Day9-12 支持向量机

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  8. 100天搞定机器学习|Day16 通过内核技巧实现SVM

    前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...

  9. 100天搞定机器学习|Day17-18 神奇的逻辑回归

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

随机推荐

  1. 用Python玩数据-笔记整理-第一章

    第一个程序:print >>>print("Hallo World!") >>>Hallo World! mystring = "Ha ...

  2. 教你发布vue+.netCore项目到服务器

    最近一直在做项目,发布部署的事情都是同事或者老大做的,无奈什么事都要自己尝试经历后才能记住,所以发布的事情轮到我了,由于是第一次发布部署项目到一个新的服务器环境,难免会遇到各种各样的问题,总结下来,希 ...

  3. Java编程思想:一个小小的控制框架

    这个实验我很喜欢,学到了非常多的东西: import java.util.ArrayList; import java.util.List; public class Test { public st ...

  4. getlasterror() 输出错误信息,

    得自http://bbs.csdn.net/topics/390416234 LPVOID lpMsgBuf;  FormatMessage(      FORMAT_MESSAGE_ALLOCATE ...

  5. sudo ln -sf libhiredis.so.0.10 libhiredis.so.0

    which ldconfig sudo ln -sf libhiredis.so.0.10 libhiredis.so.0

  6. 使用docker搭建gitlab服务器

    简单记录Docker的使用和GitLab的搭建 Docker基础篇 没有sudo权限 安装docker 基础命令 docker安装mysql和配置 Dockerfile常用命令 制作镜像 发布镜像 容 ...

  7. MediatR-进程内的消息通信框架

    MediatR是一款进程内的消息订阅.发布框架,提供了Send方法用于发布到单个处理程序.Publish方法发布到多个处理程序,使用起来非常方便.目前支持 .NET Framework4.5..NET ...

  8. CentOS 7.3 配置静态ip

    镜像:CentOS-7-x86_64-DVD-1511.iso 1.修改.查看虚拟机的网段 1.1.查看虚拟机网段 编辑-> 虚拟机网络编辑器,修改的需要管理员权限 选择NAT模式 点击 NAT ...

  9. JAVA 使用 POI进行读取Excel表格示例

    导包 编码 public class PoiTest { /** * 最终效果 * 表头一内容0 表头二内容1 表头三内容2 表头一内容1 表头二内容2 表头三内容3 表头一内容2 表头二内容3 表头 ...

  10. c语言进阶8-数据结构

    一.  数据结构的起源: 1.        为什么要学习数据结构 阿基米德说过:“给我一个支点,我就能翘起地球”.那么给我一个程序,我就能用好程序,给我一个结构,我就能把内容填充完成.打个比方,一个 ...