HBase 学习之路(七)——HBase过滤器详解
一、HBase过滤器简介
Hbase提供了种类丰富的过滤器(filter)来提高数据处理的效率,用户可以通过内置或自定义的过滤器来对数据进行过滤,所有的过滤器都在服务端生效,即谓词下推(predicate push down)。这样可以保证过滤掉的数据不会被传送到客户端,从而减轻网络传输和客户端处理的压力。

二、过滤器基础
2.1 Filter接口和FilterBase抽象类
Filter接口中定义了过滤器的基本方法,FilterBase抽象类实现了Filter接口。所有内置的过滤器则直接或者间接继承自FilterBase抽象类。用户只需要将定义好的过滤器通过setFilter
方法传递给Scan
或put
的实例即可。
setFilter(Filter filter)
// Scan 中定义的setFilter
@Override
public Scan setFilter(Filter filter) {
super.setFilter(filter);
return this;
}
// Get 中定义的setFilter
@Override
public Get setFilter(Filter filter) {
super.setFilter(filter);
return this;
}
FilterBase的所有子类过滤器如下:

说明:上图基于当前时间点(2019.4)最新的Hbase-2.1.4 ,下文所有说明均基于此版本。
2.2 过滤器分类
HBase 内置过滤器可以分为三类:分别是比较过滤器,专用过滤器和包装过滤器。分别在下面的三个小节中做详细的介绍。
三、比较过滤器
所有比较过滤器均继承自CompareFilter
。创建一个比较过滤器需要两个参数,分别是比较运算符和比较器实例。
public CompareFilter(final CompareOp compareOp,final ByteArrayComparable comparator) {
this.compareOp = compareOp;
this.comparator = comparator;
}
3.1 比较运算符
- LESS (<)
- LESS_OR_EQUAL (<=)
- EQUAL (=)
- NOT_EQUAL (!=)
- GREATER_OR_EQUAL (>=)
- GREATER (>)
- NO_OP (排除所有符合条件的值)
比较运算符均定义在枚举类CompareOperator
中
@InterfaceAudience.Public
public enum CompareOperator {
LESS,
LESS_OR_EQUAL,
EQUAL,
NOT_EQUAL,
GREATER_OR_EQUAL,
GREATER,
NO_OP,
}
注意:在 1.x 版本的HBase中,比较运算符定义在
CompareFilter.CompareOp
枚举类中,但在2.0之后这个类就被标识为 @deprecated ,并会在3.0移除。所以2.0之后版本的HBase需要使用CompareOperator
这个枚举类。
3.2 比较器
所有比较器均继承自ByteArrayComparable
抽象类,常用的有以下几种:

- BinaryComparator : 使用
Bytes.compareTo(byte [],byte [])
按字典序比较指定的字节数组。 - BinaryPrefixComparator : 按字典序与指定的字节数组进行比较,但只比较到这个字节数组的长度。
- RegexStringComparator : 使用给定的正则表达式与指定的字节数组进行比较。仅支持
EQUAL
和NOT_EQUAL
操作。 - SubStringComparator : 测试给定的子字符串是否出现在指定的字节数组中,比较不区分大小写。仅支持
EQUAL
和NOT_EQUAL
操作。 - NullComparator :判断给定的值是否为空。
- BitComparator :按位进行比较。
BinaryPrefixComparator
和 BinaryComparator
的区别不是很好理解,这里举例说明一下:
在进行EQUAL
的比较时,如果比较器传入的是abcd
的字节数组,但是待比较数据是abcdefgh
:
- 如果使用的是
BinaryPrefixComparator
比较器,则比较以abcd
字节数组的长度为准,即efgh
不会参与比较,这时候认为abcd
与abcdefgh
是满足EQUAL
条件的; - 如果使用的是
BinaryComparator
比较器,则认为其是不相等的。
3.3 比较过滤器种类
比较过滤器共有五个(Hbase 1.x 版本和2.x 版本相同),见下图:

- RowFilter :基于行键来过滤数据;
- FamilyFilterr :基于列族来过滤数据;
- QualifierFilterr :基于列限定符(列名)来过滤数据;
- ValueFilterr :基于单元格(cell) 的值来过滤数据;
- DependentColumnFilter :指定一个参考列来过滤其他列的过滤器,过滤的原则是基于参考列的时间戳来进行筛选 。
前四种过滤器的使用方法相同,均只要传递比较运算符和运算器实例即可构建,然后通过setFilter
方法传递给scan
:
Filter filter = new RowFilter(CompareOperator.LESS_OR_EQUAL,
new BinaryComparator(Bytes.toBytes("xxx")));
scan.setFilter(filter);
DependentColumnFilter
的使用稍微复杂一点,这里单独做下说明。
3.4 DependentColumnFilter
可以把DependentColumnFilter
理解为一个valueFilter和一个时间戳过滤器的组合。DependentColumnFilter
有三个带参构造器,这里选择一个参数最全的进行说明:
DependentColumnFilter(final byte [] family, final byte[] qualifier,
final boolean dropDependentColumn, final CompareOperator op,
final ByteArrayComparable valueComparator)
- family :列族
- qualifier :列限定符(列名)
- dropDependentColumn :决定参考列是否被包含在返回结果内,为true时表示参考列被返回,为false时表示被丢弃
- op :比较运算符
- valueComparator :比较器
这里举例进行说明:
DependentColumnFilter dependentColumnFilter = new DependentColumnFilter(
Bytes.toBytes("student"),
Bytes.toBytes("name"),
false,
CompareOperator.EQUAL,
new BinaryPrefixComparator(Bytes.toBytes("xiaolan")));
- 首先会去查找
student:name
中值以xiaolan
开头的所有数据获得参考数据集
,这一步等同于valueFilter过滤器; - 其次再用参考数据集中所有数据的时间戳去检索其他列,获得时间戳相同的其他列的数据作为
结果数据集
,这一步等同于时间戳过滤器; - 最后如果
dropDependentColumn
为true,则返回参考数据集
+结果数据集
,若为false,则抛弃参考数据集,只返回结果数据集
。
四、专用过滤器
专用过滤器通常直接继承自FilterBase
,适用于范围更小的筛选规则。
4.1 单列列值过滤器 (SingleColumnValueFilter)
基于某列(参考列)的值决定某行数据是否被过滤。其实例有以下方法:
- setFilterIfMissing(boolean filterIfMissing) :默认值为false,即如果该行数据不包含参考列,其依然被包含在最后的结果中;设置为true时,则不包含;
- setLatestVersionOnly(boolean latestVersionOnly) :默认为true,即只检索参考列的最新版本数据;设置为false,则检索所有版本数据。
SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter(
"student".getBytes(),
"name".getBytes(),
CompareOperator.EQUAL,
new SubstringComparator("xiaolan"));
singleColumnValueFilter.setFilterIfMissing(true);
scan.setFilter(singleColumnValueFilter);
4.2 单列列值排除器 (SingleColumnValueExcludeFilter)
SingleColumnValueExcludeFilter
继承自上面的SingleColumnValueFilter
,过滤行为与其相反。
4.3 行键前缀过滤器 (PrefixFilter)
基于RowKey值决定某行数据是否被过滤。
PrefixFilter prefixFilter = new PrefixFilter(Bytes.toBytes("xxx"));
scan.setFilter(prefixFilter);
4.4 列名前缀过滤器 (ColumnPrefixFilter)
基于列限定符(列名)决定某行数据是否被过滤。
ColumnPrefixFilter columnPrefixFilter = new ColumnPrefixFilter(Bytes.toBytes("xxx"));
scan.setFilter(columnPrefixFilter);
4.5 分页过滤器 (PageFilter)
可以使用这个过滤器实现对结果按行进行分页,创建PageFilter实例的时候需要传入每页的行数。
public PageFilter(final long pageSize) {
Preconditions.checkArgument(pageSize >= 0, "must be positive %s", pageSize);
this.pageSize = pageSize;
}
下面的代码体现了客户端实现分页查询的主要逻辑,这里对其进行一下解释说明:
客户端进行分页查询,需要传递startRow
(起始RowKey),知道起始startRow
后,就可以返回对应的pageSize行数据。这里唯一的问题就是,对于第一次查询,显然startRow
就是表格的第一行数据,但是之后第二次、第三次查询我们并不知道startRow
,只能知道上一次查询的最后一条数据的RowKey(简单称之为lastRow
)。
我们不能将lastRow
作为新一次查询的startRow
传入,因为scan的查询区间是[startRow,endRow) ,即前开后闭区间,这样startRow
在新的查询也会被返回,这条数据就重复了。
同时在不使用第三方数据库存储RowKey的情况下,我们是无法通过知道lastRow
的下一个RowKey的,因为RowKey的设计可能是连续的也有可能是不连续的。
由于Hbase的RowKey是按照字典序进行排序的。这种情况下,就可以在lastRow
后面加上0
,作为startRow
传入,因为按照字典序的规则,某个值加上0
后的新值,在字典序上一定是这个值的下一个值,对于HBase来说下一个RowKey在字典序上一定也是等于或者大于这个新值的。
所以最后传入lastRow
+0
,如果等于这个值的RowKey存在就从这个值开始scan,否则从字典序的下一个RowKey开始scan。
25个字母以及数字字符,字典排序如下:
'0' < '1' < '2' < ... < '9' < 'a' < 'b' < ... < 'z'
分页查询主要实现逻辑:
byte[] POSTFIX = new byte[] { 0x00 };
Filter filter = new PageFilter(15);
int totalRows = 0;
byte[] lastRow = null;
while (true) {
Scan scan = new Scan();
scan.setFilter(filter);
if (lastRow != null) {
// 如果不是首行 则lastRow + 0
byte[] startRow = Bytes.add(lastRow, POSTFIX);
System.out.println("start row: " +
Bytes.toStringBinary(startRow));
scan.withStartRow(startRow);
}
ResultScanner scanner = table.getScanner(scan);
int localRows = 0;
Result result;
while ((result = scanner.next()) != null) {
System.out.println(localRows++ + ": " + result);
totalRows++;
lastRow = result.getRow();
}
scanner.close();
//最后一页,查询结束
if (localRows == 0) break;
}
System.out.println("total rows: " + totalRows);
需要注意的是在多台Regin Services上执行分页过滤的时候,由于并行执行的过滤器不能共享它们的状态和边界,所以有可能每个过滤器都会在完成扫描前获取了PageCount行的结果,这种情况下会返回比分页条数更多的数据,分页过滤器就有失效的可能。
4.6 时间戳过滤器 (TimestampsFilter)
List<Long> list = new ArrayList<>();
list.add(1554975573000L);
TimestampsFilter timestampsFilter = new TimestampsFilter(list);
scan.setFilter(timestampsFilter);
4.7 首次行键过滤器 (FirstKeyOnlyFilter)
FirstKeyOnlyFilter
只扫描每行的第一列,扫描完第一列后就结束对当前行的扫描,并跳转到下一行。相比于全表扫描,其性能更好,通常用于行数统计的场景,因为如果某一行存在,则行中必然至少有一列。
FirstKeyOnlyFilter firstKeyOnlyFilter = new FirstKeyOnlyFilter();
scan.set(firstKeyOnlyFilter);
五、包装过滤器
包装过滤器就是通过包装其他过滤器以实现某些拓展的功能。
5.1 SkipFilter过滤器
SkipFilter
包装一个过滤器,当被包装的过滤器遇到一个需要过滤的KeyValue实例时,则拓展过滤整行数据。下面是一个使用示例:
// 定义ValueFilter过滤器
Filter filter1 = new ValueFilter(CompareOperator.NOT_EQUAL,
new BinaryComparator(Bytes.toBytes("xxx")));
// 使用SkipFilter进行包装
Filter filter2 = new SkipFilter(filter1);
5.2 WhileMatchFilter过滤器
WhileMatchFilter
包装一个过滤器,当被包装的过滤器遇到一个需要过滤的KeyValue实例时,WhileMatchFilter
则结束本次扫描,返回已经扫描到的结果。下面是其使用示例:
Filter filter1 = new RowFilter(CompareOperator.NOT_EQUAL,
new BinaryComparator(Bytes.toBytes("rowKey4")));
Scan scan = new Scan();
scan.setFilter(filter1);
ResultScanner scanner1 = table.getScanner(scan);
for (Result result : scanner1) {
for (Cell cell : result.listCells()) {
System.out.println(cell);
}
}
scanner1.close();
System.out.println("--------------------");
// 使用WhileMatchFilter进行包装
Filter filter2 = new WhileMatchFilter(filter1);
scan.setFilter(filter2);
ResultScanner scanner2 = table.getScanner(scan);
for (Result result : scanner1) {
for (Cell cell : result.listCells()) {
System.out.println(cell);
}
}
scanner2.close();
rowKey0/student:name/1555035006994/Put/vlen=8/seqid=0
rowKey1/student:name/1555035007019/Put/vlen=8/seqid=0
rowKey2/student:name/1555035007025/Put/vlen=8/seqid=0
rowKey3/student:name/1555035007037/Put/vlen=8/seqid=0
rowKey5/student:name/1555035007051/Put/vlen=8/seqid=0
rowKey6/student:name/1555035007057/Put/vlen=8/seqid=0
rowKey7/student:name/1555035007062/Put/vlen=8/seqid=0
rowKey8/student:name/1555035007068/Put/vlen=8/seqid=0
rowKey9/student:name/1555035007073/Put/vlen=8/seqid=0
--------------------
rowKey0/student:name/1555035006994/Put/vlen=8/seqid=0
rowKey1/student:name/1555035007019/Put/vlen=8/seqid=0
rowKey2/student:name/1555035007025/Put/vlen=8/seqid=0
rowKey3/student:name/1555035007037/Put/vlen=8/seqid=0
可以看到被包装后,只返回了rowKey4
之前的数据。
六、FilterList
以上都是讲解单个过滤器的作用,当需要多个过滤器共同作用于一次查询的时候,就需要使用FilterList
。FilterList
支持通过构造器或者addFilter
方法传入多个过滤器。
// 构造器传入
public FilterList(final Operator operator, final List<Filter> filters)
public FilterList(final List<Filter> filters)
public FilterList(final Filter... filters)
// 方法传入
public void addFilter(List<Filter> filters)
public void addFilter(Filter filter)
多个过滤器组合的结果由operator
参数定义 ,其可选参数定义在Operator
枚举类中。只有MUST_PASS_ALL
和MUST_PASS_ONE
两个可选的值:
- MUST_PASS_ALL :相当于AND,必须所有的过滤器都通过才认为通过;
- MUST_PASS_ONE :相当于OR,只有要一个过滤器通过则认为通过。
@InterfaceAudience.Public
public enum Operator {
/** !AND */
MUST_PASS_ALL,
/** !OR */
MUST_PASS_ONE
}
使用示例如下:
List<Filter> filters = new ArrayList<Filter>();
Filter filter1 = new RowFilter(CompareOperator.GREATER_OR_EQUAL,
new BinaryComparator(Bytes.toBytes("XXX")));
filters.add(filter1);
Filter filter2 = new RowFilter(CompareOperator.LESS_OR_EQUAL,
new BinaryComparator(Bytes.toBytes("YYY")));
filters.add(filter2);
Filter filter3 = new QualifierFilter(CompareOperator.EQUAL,
new RegexStringComparator("ZZZ"));
filters.add(filter3);
FilterList filterList = new FilterList(filters);
Scan scan = new Scan();
scan.setFilter(filterList);
参考资料
HBase: The Definitive Guide _> Chapter 4. Client API: Advanced Features
更多大数据系列文章可以参见个人 GitHub 开源项目: 程序员大数据入门指南
HBase 学习之路(七)——HBase过滤器详解的更多相关文章
- go语言学习之路六:接口详解
Go语言没有类和继承的概念,但是接口的存在使得它可以实现很多面向对象的特性.接口定义了一些方法,但是这些方法不包含实现的代码.也就是说这些代码没有被实现(抽象的方法).同时接口里面也不包含变量. 看一 ...
- Asp.Net MVC学习总结之过滤器详解(转载)
来源:http://www.php.cn/csharp-article-359736.html 一.过滤器简介 1.1.理解什么是过滤器 1.过滤器(Filters)就是向请求处理管道中注入额外的 ...
- ISO七层模型详解
ISO七层模型详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在我刚刚接触运维这个行业的时候,去面试时总是会做一些面试题,笔试题就是看一个运维工程师的专业技能的掌握情况,这个很 ...
- Scala进阶之路-Scala函数篇详解
Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http: ...
- MVC过滤器详解
MVC过滤器详解 APS.NET MVC中(以下简称"MVC")的每一个请求,都会分配给相应的控制器和对应的行为方法去处理,而在这些处理的前前后后如果想再加一些额外的逻辑处理. ...
- ASP.NET MVC 5 学习教程:生成的代码详解
原文 ASP.NET MVC 5 学习教程:生成的代码详解 起飞网 ASP.NET MVC 5 学习教程目录: 添加控制器 添加视图 修改视图和布局页 控制器传递数据给视图 添加模型 创建连接字符串 ...
- IP地址和子网划分学习笔记之《IP地址详解》
2018-05-03 18:47:37 在学习IP地址和子网划分前,必须对进制计数有一定了解,尤其是二进制和十进制之间的相互转换,对于我们掌握IP地址和子网的划分非常有帮助,可参看如下目录详文. ...
- OpenCV学习C++接口 Mat像素遍历详解
OpenCV学习C++接口 Mat像素遍历详解
- 零拷贝详解 Java NIO学习笔记四(零拷贝详解)
转 https://blog.csdn.net/u013096088/article/details/79122671 Java NIO学习笔记四(零拷贝详解) 2018年01月21日 20:20:5 ...
- UWP入门(七)--SplitView详解与页面跳转
原文:UWP入门(七)--SplitView详解与页面跳转 官方文档,逼着自己用英文看,UWP开发离不开官方文档 1. SplitView 拆分视图控件 拆分视图控件具有一个可展开/可折叠的窗格和一个 ...
随机推荐
- 陈硕 - Linux 多线程服务端编程 - muduo 网络库作者
http://chenshuo.com/book/ Muduo网络库源码分析(一) EventLoop事件循环(Poller和Channel)http://blog.csdn.net/nk_test/ ...
- 【003】【Java虚拟机——对象死亡的判断】
对象死亡! 垃圾收集器在对堆进行回收前,首先要做的事情就是要确定这些对象之中哪些还"存活"着, 哪些已经"死去" (即不可能再被不论什么途径使用的对象). 1) 引用计 ...
- C#常用多线程方法
1. Thread类 C#多线程编程中Thread类需要包含名称空间System.Threading. class Program { static void Main(string[] args) ...
- Expression.Blend.4 Chapter 图片和视频的使用
原文:Expression.Blend.4 Chapter 图片和视频的使用 翻译的地方可能有错误,欢迎大家指正.但是里面每一个程序都是亲自测试过,并加了点自己的看法. 我翻译的是Expression ...
- python 教程 第四章、 控制流
第四章. 控制流 控制语句后面要加冒号: 1) if语句 if guess == number: print 'Congratulations, you guessed it.' # New b ...
- sqlite 初
1.SQLite是什么 基于文件的轻型数据库 无服务器 零配置 支持事务 开源 2.SQLite 怎么用 2.1 安装 SQLite官网上下载对应的DLL 与工具 配置环境变量 安装完成以后 ...
- DirectX 图形流水线
Direct3D 的可编程流水线用来为实时游戏渲染图形(一个词概括——实时渲染) 上面的图是Dx11的实时渲染流水线,Dx的几个版本都是向下兼容的. Input-Assembler Stage: 输入 ...
- JS 数组两种定义方式
<!DOCTYPE html><html lang="en" xmlns="http://www.w3.org/1999/xhtml"> ...
- C# WebClient的使用
using System;using System.Collections.Generic;using System.ComponentModel;using System.Data;using Sy ...
- 图像滤镜艺术---流行艺术风滤镜特效PS实现
原文:图像滤镜艺术---流行艺术风滤镜特效PS实现 今天,本人给大家介绍一款新滤镜:流行艺术风效果,先看下效果吧! 原图 流行艺术风效果图 上面的这款滤镜效果是不是很赞,呵呵,按照本人以往的逻辑,我会 ...