回到目录

本小节我们以2N4123通用型BJT硅基晶体管为例,来介绍如何阅读BJT的数据规格书,点此链接可以阅读和下载2N4123的数据规格书。

1. 总体性能

打开datasheet后,首先看标题:

图3-8.01

可以看到,这是2N4123、2N4124共用的一个datasheet,而且是通用型NPN硅基三极管。然后在在第一页的右侧,厂家给出了管脚识别方法和管体上的文字标记含义:

图3-8.02

在第一页的主体篇幅,数据规格书列出了这个BJT晶体管的所有极限性能,好让使用者先对这个器件有一个总体的印象,下面我们一条条来看:

图3-8.03

• VCEO:基极开路情况下,CE间的击穿电压,在这一栏中,Value一列有两行,上行30V为2N4123的参数;下行25V为2N4124的参数。后面我们都仅以2N4123的参数为例,不再分2种型号分开罗列描述。(VCEO的电路连接与概念可参看前文的图3-5.06)

• VCBO:发射极开路情况下,CB间的集电结结的反向击穿电压,为40V。(VCBO电路连接和概念可参看前文的图3-3.07和图3-3.10。)

• VEBO:集电极开路情况下,BE间发射结的反偏击穿电压,为5V。

• IC-continuous:可承受的最大连续集电极电流,为200mA。

• PD(@TA=25℃):环境温度为25℃时的最大耗损功率(TA中A的意思是“Ambient”),典型值为625mW、衰减系数为5mW/℃。这2个是比较重要的参数,请参看下面的详细说明

• PD(@TC=25℃):管体表面温度为25℃时的最大耗损功率(TC中C的意思是“Surface”),典型值为1.5W,比上面环境温度为25℃时的PD值大了近3倍。这个也很好理解,一般来说温度越高,晶体管的性能越差。在晶体管电流较大时,管体表面温度有可能远高于环境温度(摸上去都可能烫手),所以限制了最大耗损功率的大小。只有在管体表面加装了面积很大且接触良好的散热片时,才能认为管体表面温度近似等于环境温度,而使用这个1.5W的标称值。

• TJ, Tstg:工作温度范围与仓储温度范围,典型值为-55℃~+150℃。

• RθJA:内部PN结到环境之间的热阻,为200℃/W。关于热阻、温度、功率之间的如何计算,前面的“1-6二极管数据规格书”小节已经介绍过了,这里就不再赘述了,回看可点击这里

• RθJC:内部PN结到管体表面之间的热阻,为83.3℃/W。

● 关于最大耗损功率的说明:

由于BJT的CE极间有压降VCE、有电流IC,所以三极管本身也是要消耗功率的,而且还不小。根据“功率=电压*电流”的公式,三极管的主要功耗产生在C、E极间(BE间和BC间由于基极电流IB太小,故可以忽略不记)。

所以在做设计时,除了要保证VCE不能超过上面的VCEO、IC不能超过上面的IC-continuous以外,还要计算耗损功率是否会超限,如下图所示:

图3-8.04

在上图中,PD功率曲线下方的绿色区域是安全区域,如果超出这个区域,就会导致晶体管损坏。

衰减系数(Derate above 25℃)5.0mW/℃是指,当温度高于25℃时,每升高1℃,最大耗损功率参数会降低5mW。比如,当环境温度上升到135℃时,本晶体管允许的最大耗损功率PD只有:

当环境温度上升到125℃时,本晶体管允许的最大耗损功率PD更是下降到了:

2. 具体性能参数

从第2页开始,为具体的性能参数表格,我们一个个表格来看:

(1)截止性能参数

图3-8.05

• V(BR)CEO:、V(BR)CBO、V(BR)EBO:这3个参数在前面的总体性能表格中已经出现过,这里只是为了表格完整性再重复罗列一下而已。

• ICBO:指在E极开路,CB间加上20V的反偏电压时,集电结的漏电流,为50nA。(电路连接和概念可参看前文图3-3.07)。一般我们可以通过这个参数计算ICEO(ICEO的概念可参看前文图3-5.06),具体算式为:ICEO = β ICBO

• IEBO:指在C极开路,EB间加上20V的反偏电压时,发射结的漏电流,为50nA。

(2)导通性能参数

图3-8.06

• hFE:这个就是直流电流放大系数β(至于为什么要写成hFE,这个我们在下一章BJT的交流分析中会讲)。这里我们在表格中可以看到,在IC的两个不同条件下,测得的放大系数不同。在第一个条件(IC=2mA,VCE=1.0V)时,直流放大系数β的值在50~150都是合格的;在第二个条件(IC=50mA,VCE=1.0V)下,放大系数β只有25。

• VCEsat:这个就是在共射放大电路中常用的CE间饱和电压,这里是0.3V。测试条件为IC=50mA,IB=5mA,可以看到,此时直流放大倍数IC/IB=10,远小于放大系数β正常最小值的50,说明确实是饱和了。

• VBEsat:测试条件和上面相同(晶体管处于饱和状态),此时BE间的电压即为VBEsat饱和电压(一般电路分析计算时不常用)。

(3)小信号性能参数

图3-8.07

小信号性能参数基本都为交流参数,这个等我们下一章讲BJT放大电路的交流分析时再讲。现在唯一需要看一下的是上图中的hfe参数(下标fe用小写),即交流电流放大系数βac

3. 特性曲线

数据规格书的第三部分是本晶体管的特性曲线,其中Figure1~8为交流特性曲线,Figure9~12为直流特性曲线。关于交流特性,我们放到下一章再讲,这里我们仅分析Figue9~12的直流特性曲线:

● 直流增益

图3-8.08

上图为直流增益hFE(即直流β)随IC变化的曲线,测试条件为VCE=1V。从图中我们可以看到,hFE值会受多种因素的影响,hFE不仅会随温变化而变化,还会随集电极电流IC的变化而变化。

这里要说明一下的是纵坐标的表示方式,图中“NORMALIZED”称为“归一化参数”。即:把在+25℃和IC=8mA条件下的hFE作为基准hFE值,其他条件下的hFE值相对于这个基准值的比值。这是个无量纲(即无单位)的参数,常用于表示某值随其他条件的相对变化量。

● 饱和电流范围

图3-8.09

上图为描述饱和区的特性曲线,看上去好像很复杂,其实,只要将其顺时针转90度,就是我们熟悉的图形了:

图3-8.10

上图就是我们非常熟悉的共射组态的输出特性曲线了,其中横坐标为VCE,纵坐标是IB(这个与我们先前学过的图形稍稍不同),其中每条曲线对应于一个IC。其实本质是一样的,只不过把我们以前图中的IB和IC互相调换了一下位置而已。图中橙色部分即为大致的饱和区。

● 一些导通时的电压特性

图3-8.11

上图是进一步描述一些电压-电流特性的。其中VCEsat和VBEsat那两条曲线是描述饱和阈值特性的,测试条件为IC/IB=10,此时的直流放大倍数只有10,远小于正常的hFE值了,所以晶体管一定处于饱和状态。最下面那条曲线为饱和阈值电压VCEsat随IC变化的曲线;最上面那条曲线为饱和阈值电压VBEsat随IC变化的曲线。

中间那条曲线为当VCE恒定保持1V时,VBE和IC的对应关系,此曲线其实和饱和没啥关系,只不过是厂家为了方便,把与IC对应的各种电压描述曲线都放到同一张图里了。

● 温度系数

图3-8.12

先不看图,单讲温度系数的含义。温度系数θ的意思是指,某些参数的值可能会随温度的变化而变化。比如,饱和阈值电压VCEsat,会随环境温度的变化而变化,它的温度系数就定义为:θVC,其在某温度t下的计算式为:

问题在于,θVC这个值本身也不是固定的,它会随着IC的变化而变化。所以,图中上面那组横V字形的曲线组,就用来表示θVC值在25℃以上和25℃以下时θVC与IC的对应关系。同理,下面那组曲线表示θVB和IC的对应关系。

回到目录

( end of 3-8)


初级模拟电路:3-8 BJT数据规格书(直流部分)的更多相关文章

  1. 初级模拟电路:4-3 BJT晶体管的交流建模

    回到目录 1. 四种BJT模型概述 对BJT晶体管建模的基本思路就是,用电路原理中的五大基本元件(电阻.电容.电感.电源.受控源)构建一个电路,使其在一定工作条件下能等效非线性半导体器件的实际工作.一 ...

  2. 初级模拟电路:3-10 BJT实现开关电路

    回到目录 1. 基本用法 用BJT晶体管实现开关功能是经常会用到的实用电路.和逻辑门电路类似,当BJT用于开关电路时,也只工作于饱和区和截止区. 开关功能的实现电路如下图所示,负载可以是发光二极管.电 ...

  3. 初级模拟电路:3-1 BJT概述

    回到目录 1.   名称由来 BJT的全称是双极性结型晶体管(Bipolar Junction Transistor),国内俗称三极管.其实,在英语中,三极管(triode)特指以前的真空电子管形式的 ...

  4. 初级模拟电路:4-1 BJT交流分析概述

    回到目录 BJT晶体管的交流分析(也叫小信号分析)是模拟电路中的一个难点,也可以说是模电中的一个分水岭.如果你能够把BJT交流分析的原理全都搞懂,那之后的学习就是一马平川了.后面的大部分内容,诸如:场 ...

  5. 初级模拟电路:3-2 BJT的工作原理

    回到目录 和前面介绍二极管的PN结的工作原理一样,BJT的量子级工作机制也非常复杂,一般教科书上为了帮助学习者能快速理解,也都是用一种简化模型的方法来介绍BJT的工作机理,一般只需大致了解即可.只要记 ...

  6. 初级模拟电路:3-9 BJT三极管实现逻辑门

    回到目录 BJT晶体管可以实现逻辑门,事实上,在场效应管被发明用于集成电路以前,各种逻辑门芯片中的电路就是用BJT晶体管来实现的.最早人们使用二极管与BJT组合来实现逻辑门,这个称为二极管-晶体管逻辑 ...

  7. 初级模拟电路:3-11 BJT实现电流源

    回到目录 1. 恒流源 (1)简易恒流源 用BJT晶体管可以构造一个简易的恒流源,实现电路如下: 图3-11.01 前面我们在射极放大电路的分压偏置时讲过,分压偏置具有非常好的稳定性,几乎不受晶体管的 ...

  8. 初级模拟电路:1-2 PN结与二极管

    回到目录 1.   掺杂半导体 上面我们分析了本征半导体的导电情况,但由于本征半导体的导电能力很低,没什么太大用处.所以,一般我们会对本征半导体材料进行掺杂,即使只添加了千分之一的杂质,也足以改变半导 ...

  9. ASP模拟POST请求异步提交数据的方法

    这篇文章主要介绍了ASP模拟POST请求异步提交数据的方法,本文使用MSXML2.SERVERXMLHTTP.3.0实现POST请求,需要的朋友可以参考下 有时需要获取远程网站的某些信息,而服务器又限 ...

随机推荐

  1. Android Studio中的AndroidManifest.xml文件分析

    一.关于AndroidManifest.xml AndroidManifest.xml清单文件是每个Android程序中必须的文件,它是整个Android程序的全局描述文件,除了能声明程序中的Acti ...

  2. 【zabbix服务】修改zabbix_server默认端口号

    1. zabbix-server的默认端口号是10051.如果存在端口号冲突,需要更改端口号. 2. 更改配置文件 # 监听端口这行默认被注释的(将下面的端口改为自己定义的) [root@tanbao ...

  3. (好文转载与总结)Windows10安装ubuntu18.04

    Windows10中安装Ubuntu,期间踩了非常多的坑,最终安装成功了,梳理下来Windows10装Ubuntu的步骤还是比较简明的. 制作Ubuntu系统U盘 Windows磁盘为新系统进行分区, ...

  4. 东芝MCU实现位带操作

    位带操作简介 位带操作的概念其实30年前就有了,那还是 8051单片机开创的先河,如今ARM CM3 将此能力进化,可以说,这里的位带操作是8051 位寻址区的威力大幅加强版.即如果要改写某个寄存器的 ...

  5. PlayJava Day026

    1.泛型:指代任意对象类型 public class CC<T> {} C<Integer> c = new C<Integer>(1) ; 2.限制泛型:用于继承 ...

  6. MyBatis映射文件 相关操作

    一.MyBatis映射文件 1.简介 MyBatis 的真正强大在于它的映射语句,也是它的魔力所在.由于它的异常强大,映射器的 XML 文件就显得相对简单.如果拿它跟具有相同功能的 JDBC 代码进行 ...

  7. js-01-基础知识

    一.JS变量的声明.数据类型和变量的转换 1.js变量声明关键字:var 注意:a:js变量区分大小写: b:js中字符串可使用双引号,也可使用单引号: c:js中可声明同名变量,控制台不会报错,但后 ...

  8. HTML入门(列表、表单、常用表单控件、浮动框架、iframe、 摘要与细节、度量标签)

    一.列表 1.作用:默认显示方式为从上到下的显示数据 2.列表的组成 列表类型和列表项 3.列表的分类:有序列表   无序列表   自定义列表 无序列表语法为ul>li, 语法:ul代表列表,l ...

  9. Flutter安装入门教程

    ### 前言 Flutter是谷歌的移动UI框架,可以快速在iOS和Android上构建高质量的原生用户界面. Flutter可以与现有的代码一起工作.在全世界,Flutter正在被越来越多的开发者和 ...

  10. 011.MongoDB性能监控

    一 MongoDB 监控 1.1 监控概述 MongoDB自带了mongostat 和 mongotop 这两个命令来监控MongoDB的运行情况.这两个命令用于处理MongoDB数据库变慢等等问题非 ...