题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081

题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点。秦始皇希望这所有n-1条路长度之和最短。然后徐福突然有冒出来,说是他有魔法,可以不用人力、财力就变出其中任意一条路出来。

秦始皇希望徐福能把要修的n-1条路中最长的那条变出来,但是徐福希望能把要求的人力数量最多的那条变出来。对于每条路所需要的人力,是指这条路连接的两个城市的人数之和。

最终,秦始皇给出了一个公式,A/B,A是指要徐福用魔法变出的那条路所需人力, B是指除了徐福变出来的那条之外的所有n-2条路径长度之和,选使得A/B值最大的那条。

题解:就是次小生成树稍微改一下就行,这里只能用prim的次小生成树,由于边太多但是点还是1000。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
struct TnT {
int x , y , p;
}T[1010];
double lowcost[1010] , mmp[1010][1010] , maxpath[1010][1010] , cost[1010];
int pre[1010];
bool vis[1010][1010] , has[1010];
double prim(int n) {
lowcost[1] = 0;
pre[1] = 0;
memset(vis , false , sizeof(vis));
memset(has , false , sizeof(has));
has[1] = true;
for(int i = 2 ; i <= n ; i++) {
lowcost[i] = mmp[1][i];
pre[i] = 1;
}
double sum = 0;
for(int i = 2 ; i <= n ; i++) {
int pos = 0;
double MIN = 10000000000000.0;
for(int j = 1 ; j <= n ; j++) {
if(!has[j] && lowcost[j] < MIN) {
MIN = lowcost[j];
pos = j;
}
}
sum += MIN;
vis[pos][pre[pos]] = vis[pre[pos]][pos] = true;
has[pos] = true;
for(int j = 1 ; j <= n ; j++) {
if(has[j] && j != pos) {
maxpath[pos][j] = maxpath[j][pos] = max(maxpath[j][pre[pos]] , lowcost[pos]);
}
if(!has[j]) {
if(mmp[pos][j] < lowcost[j]) {
lowcost[j] = mmp[pos][j];
pre[j] = pos;
}
}
}
}
return sum;
} double getlen(int a , int b) {
return sqrt((T[a].x - T[b].x) * (T[a].x - T[b].x) + (T[a].y - T[b].y) * (T[a].y - T[b].y));
}
int main() {
int t;
scanf("%d" , &t);
while(t--) {
int n;
scanf("%d" , &n);
for(int i = 1 ; i <= n ; i++) {
int u , v , p;
scanf("%d%d%d" , &u , &v , &p);
T[i].x = u , T[i].y = v , T[i].p = p;
cost[i] = 1.0 * p;
}
for(int i = 1 ; i <= n ; i++) {
for(int j = 1 ; j <= n ; j++) {
mmp[i][j] = getlen(i , j);
}
}
double sum = prim(n);
double val = 0.0;
for(int i = 1 ; i <= n ; i++) {
for(int j = 1 ; j <= n ; j++) {
if(i == j) continue;
if(!vis[i][j]) {
val = max(val , 1.0 * (cost[i] + cost[j]) / (sum - maxpath[i][j]));
}
else {
val = max(val , 1.0 * (cost[i] + cost[j]) / (sum - mmp[i][j]));
}
}
}
printf("%.2lf\n" , val);
}
return 0;
}

hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)的更多相关文章

  1. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  2. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  3. HDU 4081 Qin Shi Huang's National Road System [次小生成树]

    题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...

  4. HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...

  5. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  6. HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  7. HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形

    题目链接:https://vjudge.net/problem/HDU-4081 Qin Shi Huang's National Road System Time Limit: 2000/1000 ...

  8. hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1

    During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in Ch ...

  9. HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...

随机推荐

  1. Mysql执行过程总结

    总分三个阶段:Sql的解析,执行和结果获取阶段. 如下图,展开相熟.

  2. F#周报2019年第31期

    新闻 现在开始接受FSSF的第七次师友计划申请 Xamarin播客:XAML热重载 TorchSharp:将PyTorch引擎带入.NET 视频及幻灯片 F#中的异步编程2/3--实现异步工作流 ML ...

  3. 如何使用Arrays工具类操作数组

    介绍 我们要先知道Arrays 是什么. java.util.Arrays 类是 JDK 提供的一个工具类主要用来操作数组,比如数组的复制转换等各种方法,Arrays 的方法都是静态方法可以通过Arr ...

  4. 使用 Docker 生成 Let’s Encrypt 证书

    概念 什么是 Container ? https://www.docker.com/resources/what-container https://www.docker.com/why-docker ...

  5. Zookeeper的命令行操作(三)

    Zookeeper的命令行操作 1. ZooKeeper服务命令 在准备好相应的配置之后,可以直接通过zkServer.sh 这个脚本进行服务的相关操作 1. 启动ZK服务: sh bin/zkSer ...

  6. android——卡片式布局

    一.CardView <android.support.v7.widget.CardView xmlns:android="http://schemas.android.com/apk ...

  7. java中String,StringBuffer,StringBuilder的区别

    String: 1,是字符串常量,一旦创建就不能修改.对于已经存在了的String对象的修改都是重新创建一个新的对象,然后把新的值保存进去. 2,String也是final类,不能被继承. 3,而且S ...

  8. Go_笔试题记录-指针与值类型实现接口的区别

    1.如果Add函数的调用代码为: func main() { var a Integer = 1 var b Integer = 2 var i interface{} = &a sum := ...

  9. Springboot源码分析之番外篇

    摘要: 大家都知道注解是实现了java.lang.annotation.Annotation接口,眼见为实,耳听为虚,有时候眼见也不一定是真实的. /** * The common interface ...

  10. (四)Lock,ReentrantLock,ReentrantReadWriteLock类的使用以及相关api---synchronized进阶

    这篇博客记录了Lock,ReentrantLock,ReentrantReadWriteLock类的使用以及其一些api: 码字不易~~另外<java多线程编程核心技术>这本书读着很爽 前 ...