B-Tree详解
之前写过一篇关于索引的文章《SQL夯实基础(五):索引的数据结构》,这次我们主要详细讨论下B-Tree。
B-树
B-tree,即B树,而不要读成B减树,它是一种多路搜索树(并不是二叉的):
1.定义任意非叶子结点最多只有M个儿子;且M>2;
2.根结点的儿子数为[2, M];
3.除根结点以外的非叶子结点的儿子数为[M/2, M];
4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
5.非叶子结点的关键字个数=指向儿子的指针个数-1;
6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
8.所有叶子结点位于同一层;
如:(M=3)
B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;
B-树的特性:
1.关键字集合分布在整颗树中;
2.任何一个关键字出现且只出现在一个结点中;
3.搜索有可能在非叶子结点结束;
4.其搜索性能等价于在关键字全集内做一次二分查找;
5.自动层次控制;
由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为:O(logN)
所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;
由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;
B-树与二叉搜索树对比
基础:磁盘IO与预读
磁盘读取依靠的是机械运动,分为寻道时间、旋转延迟、传输时间三个部分,这三个部分耗时相加就是一次磁盘IO的时间,大概9ms左右。这个成本是访问内存的十万倍左右;正是由于磁盘IO是非常昂贵的操作,所以计算机操作系统对此做了优化:预读;每一次IO时,不仅仅把当前磁盘地址的数据加载到内存,同时也把相邻数据也加载到内存缓冲区中。因为局部预读原理说明:当访问一个地址数据的时候,与其相邻的数据很快也会被访问到。每次磁盘IO读取的数据我们称之为一页(page)。一页的大小与操作系统有关,一般为4k或者8k。这也就意味着读取一页内数据的时候,实际上发生了一次磁盘IO。
我们知道二叉查找树查询的时间复杂度是O(logN),查找速度最快和比较次数最少,既然性能已经如此优秀,但为什么实现索引是使用B-Tree而不是二叉查找树,关键因素是磁盘IO的次数。
数据库索引是存储在磁盘上,当表中的数据量比较大时,索引的大小也跟着增长,达到几个G甚至更多。当我们利用索引进行查询的时候,不可能把索引全部加载到内存中,只能逐一加载每个磁盘页,这里的磁盘页就对应索引树的节点。
二叉树
我们先来看二叉树查找时磁盘IO的次:定义一个树高为4的二叉树,查找值为10:
第一次磁盘IO:
第二次磁盘IO
第三次磁盘IO:
第四次磁盘IO:
从二叉树的查找过程了来看,树的高度和磁盘IO的次数都是4,所以最坏的情况下磁盘IO的次数由树的高度来决定。
从前面分析情况来看,减少磁盘IO的次数就必须要压缩树的高度,让瘦高的树尽量变成矮胖的树,所以B-Tree就在这样伟大的时代背景下诞生了。
B-Tree
m阶B-Tree满足以下条件:
1、每个节点最多拥有m个子树
2、根节点至少有2个子树
3、分支节点至少拥有m/2颗子树(除根节点和叶子节点外都是分支节点)
4、所有叶子节点都在同一层、每个节点最多可以有m-1个key,并且以升序排列
如下有一个3阶的B树,观察查找元素21的过程:
第一次磁盘IO:
第二次磁盘IO:
这里有一次内存比对:分别跟3与12比对
第三次磁盘IO:
这里有一次内存比对,分别跟14与21比对
从查找过程中发现,B树的比对次数和磁盘IO的次数与二叉树相差不了多少,所以这样看来并没有什么优势。
但是仔细一看会发现,比对是在内存中完成中,不涉及到磁盘IO,耗时可以忽略不计。另外B树种一个节点中可以存放很多的key(个数由树阶决定)。
相同数量的key在B树中生成的节点要远远少于二叉树中的节点,相差的节点数量就等同于磁盘IO的次数。这样到达一定数量后,性能的差异就显现出来了。
B树的新增
在刚才的基础上新增元素4,它应该在3与9之间:
B树的删除
除元素9:
总结
插入或者删除元素都会导致节点发生裂变反应,有时候会非常麻烦,但正因为如此才让B树能够始终保持多路平衡,这也是B树自身的一个优势:自平衡。B树主要应用于文件系统以及部分数据库索引,如MongoDB,大部分关系型数据库索引则是使用B+树实现。
B-Tree详解的更多相关文章
- 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解
本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...
- 二叉查找树(binary search tree)详解
二叉查找树(Binary Search Tree),也称二叉排序树(binary sorted tree),是指一棵空树或者具有下列性质的二叉树: 若任意节点的左子树不空,则左子树上所有结点的值均小于 ...
- BTree和B+Tree详解
https://www.cnblogs.com/vianzhang/p/7922426.html B+树索引是B+树在数据库中的一种实现,是最常见也是数据库中使用最为频繁的一种索引.B+树中的B代表平 ...
- ODT(old driver tree)详解(带例题)
文章目录 ODT简介 实现前提&&实现原理 初始化 split操作 assign操作 其它操作 区间第k小 区间加 区间所有数的k次方和 几道水题 ODT简介 ODT(old driv ...
- [CF1009F] Dominant Indices (+dsu on tree详解)
这道题用到了dsu(Disjoint Set Union) on tree,树上启发式合并. 先看了CF的官方英文题解,又看了看zwz大佬的题解,差不多理解了dsu on tree的算法. 但是时间复 ...
- dsu on tree详解
这个算法还是挺人性化的,没有什么难度 就是可能看起来有点晕什么的. 大体 思想是 利用重链刨分来优化子树内部的查询. 考虑一个问题要对每个子树都要询问一次.我们暴力显然是\(n^2\)的. 考虑一下优 ...
- 数据结构31:树(Tree)详解
复制广义表数据结构中的树 树是数据结构中比较重要也是比较难理解的一类存储结构.本章主要主要围绕二叉树,对树的存储以及遍历做详细的介绍,同时还会涉及到有关树的实际应用,例如构建哈弗曼编码等. 由于树存储 ...
- 【2018.9.26】K-D Tree详解
网上对K-D-Tree的讲解不尽清晰,我学了很久都不会写,这里新开一文做一些讲解. 1.K-D-Tree是什么? K-DTree 即 K-Dimensional-Tree,常用来作空间划分及近邻搜索, ...
- Ext.Net学习笔记22:Ext.Net Tree 用法详解
Ext.Net学习笔记22:Ext.Net Tree 用法详解 上面的图片是一个简单的树,使用Ext.Net来创建这样的树结构非常简单,代码如下: <ext:TreePanel runat=&q ...
- Linux DTS(Device Tree Source)设备树详解之二(dts匹配及发挥作用的流程篇)【转】
转自:https://blog.csdn.net/radianceblau/article/details/74722395 版权声明:本文为博主原创文章,未经博主允许不得转载.如本文对您有帮助,欢迎 ...
随机推荐
- 026.[转] 基于Docker及Kubernetes技术构建容器云平台 (PaaS)
[编者的话] 目前很多的容器云平台通过Docker及Kubernetes等技术提供应用运行平台,从而实现运维自动化,快速部署应用.弹性伸缩和动态调整应用环境资源,提高研发运营效率. 本文简要介绍了与容 ...
- [b0025] vmware_桥接网路设置
总结: 桥接 模式上外网比较简单. 缺点是每次重启虚拟机,分配的IP可能变化,导致 xshell 连接 时都要修改,很麻烦 桥接模式能不能配置静态IP ? 1. 环境 物理机网络 情况,从外部自动 ...
- PHP代码篇(三)--常用方法
模块下不间断更新,PHP常用方法,欢迎留言! 一.递归删除指定目录下所有文件及文件夹 /** * 递归删除指定目录下所有文件及文件夹 * @param unknown $path,删除路径 */ fu ...
- Windows远程桌面多用户登录的问题
RDP WRAPPER 同时登录 多用户补丁 https://cloud.tencent.com/developer/article/1460728 解决系统更新导致无法多用户登录的问题 问题 ...
- JEB动态调试解密数据包加密字段
0x00 场景 在测试某个app的时候,抓取数据包,发现某些参数存在被加密的情况,或者有签名校验的情况,这个时候如果我们想直接去篡改数据包的内容往往是做不到的,那就来看看抓取的某个app登录数据包,如 ...
- MASK-RCNN(1)
MASK-RCNN是一个多用途的网络,可以用来做目标检测,实例分割或者人体姿态识别.主要结构如下. 简单的说,就是首先用Faster-RCNN获得ROI,再进行ROI Align,然后输出ROI的分类 ...
- Html学习之十四(阴影文字的设计)
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- python3.5.3rc1学习八:文件打包
from cx_Freeze import setup, Executable setup(name='test to exe', version = '0.1', description='test ...
- sql 以某个字段分组,另一个字段为参加比较的列,取得前n项的值
假设表A有三个字段 { id int: subject varchar(20): socre int: } 语句为 select * from A x where (select count(*) ...
- NLP_DataFun:
智能机器人在滴滴出行场景的技术探索 分享嘉宾:熊超 滴滴 AI Labs 编辑整理:Hoh Xil 内容来源:AI 科学前沿大会 出品社区:DataFun 注:欢迎转载,转载请注明出处 本次分享是在2 ...