【题解】Informacije [COCI2012]

传送门:官方题面

【题目描述】

有一个长度为 \(n\) 的 序列 \(a\)(由 \([1,n]\) 中的数组成,且每个数只会出现一次),现给出两个整数 \(n,m\) 和 \(m\) 个关于 \(a\) 的描述,格式如下:

\(1\ l\ r\ v\) 表示 \(max\{a[l],a[l+1]...a[r]\}=v\),

\(2\ l\ r\ v\) 表示 \(min\{a[l],a[l+1]...a[r]\}=v\)。

请输出一个满足上面 \(m\) 个描述的序列,如果多种答案,输出任意一种,无解则输出 \(-1\)。

【样例】

样例输入:
3 2
1 1 1 1
2 2 2 2 样例输出:
1 2 3 样例输入:
4 2
1 1 1 1
2 3 4 1 样例输出:
-1 样例输入:
5 2
1 2 3 3
2 4 5 4 样例输出:
1 2 3 4 5

【数据范围】

\(100 \%:\) \(1 \leqslant n \leqslant 200,\) \(0 \leqslant m \leqslant 40000\)


【分析】

\(n \leqslant 200\),一开始只是觉得可以写 \(n^3\) 的算法,比如矩阵乘法之类的,但看到 \(m \leqslant 40000\) 时,瞬间想到建一张完全图跑图论。事实证明这一直觉是正确的。

用 \(pan[i][j]\) 表示整数 \(i\) 是否可以填在 \(j\) 这个位置(只需要满足给出的 \(m\) 个条件即可)。

如果 \(pan[i][j]\) 为 \(1\),那么 \(i\) 向 \(j\) 连一条有向边,然后跑一遍二分图最大匹配,\(match\) 数组即为答案。

匈牙利算法的时间复杂度为:\(O(|V|*|E|)\),其中 \(|E| \leqslant |V|^2\),\(200\) 个点的完全图完全不是问题。

如何求 \(pan\) 数组?

最开始 \(yy\) 了一种 \(mn\) 的预处理方法:

\((1).\) \(Lw[x],Rw[x]\) 分别表示整数 \(x\) 必须要放的位置所在区间左右端点。

对于所有的 \(l,r,v\),\(Lw[v]=max\{l,Lw[v]\},Rw[v]=min\{r,Rw[v]\}\)。

\((2).\) \(Ls[i],Rs[i]\) 分别表示位置 \(i\) 可放置的整数范围。

对于 \(1,l,r,v\),\(Rs[i]=min\{v,Rs[i]\} (i \in [l,r])\),

对于 \(2,l,r,v\),\(Ls[i]=max\{v,Ls[i]\} (i \in [l,r])\)。

但仔细想想觉得不太对,所以就改成了 \(mn^2\) 的暴力枚举,本以为会超时,结果加了剪枝后居然轻松跑过了。

后来发现官方题解给的就是 \(mn\) 的做法,而且和我之前想的一模一样。。。

【Code】

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#define Re register int
using namespace std;
const int N=203,M=40003,inf=2e9;
int n,m,op[M],L[M],R[M],val[M],pan[N][N];
int o,ans,vis[N],head[N],match[N];
struct QAQ{int to,next;}a[N*N];
inline void add(Re x,Re y){a[++o].to=y,a[o].next=head[x],head[x]=o;}
inline void in(Re &x){
int f=0;x=0;char c=getchar();
while(c<'0'||c>'9')f|=c=='-',c=getchar();
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
x=f?-x:x;
}
inline int judge(Re i,Re L,Re R){//判断在[L,R]这个区间内是否有1
for(Re j=L;j<=R;++j)if(pan[i][j])return 1;
return 0;
}
inline void add_(Re i,Re L,Re R){//将[L,R]全部变为0
for(Re j=L;j<=R;++j)pan[i][j]=0;
}
inline void add(Re i,Re L,Re R){//将[L,R]以外的全部变为0
for(Re j=1;j<L;++j)pan[i][j]=0;
for(Re j=R+1;j<=n;++j)pan[i][j]=0;
}
inline void Print(){
for(Re i=1;i<=n;++i){
printf("pan[%d]: ",i);
for(Re j=1;j<=n;++j)if(pan[i][j])printf("%d ",j);
puts("");
}
puts("");
}
inline int sakura(){
for(Re i=1;i<=m;++i){
if(op[i]>1){//L[i]~R[i]的最小值为val[i]
if(!judge(val[i],L[i],R[i]))return 0;
add(val[i],L[i],R[i]);
for(Re j=1;j<val[i];++j){//比val小的数
Re flag1=judge(j,1,L[i]-1),flag2=judge(j,R[i]+1,n);
if(!flag1&&!flag2)return 0;//如果没有可放的位置就直接return
else if(flag1&&!flag2)add(j,1,L[i]-1);//删掉左边
else if(flag2&&!flag1)add(j,R[i]+1,n);//删掉右边
else add_(j,L[i],R[i]);//删掉左右两边
}
}
else{//L[i]~R[i]的最大值为val[i]
if(!judge(val[i],L[i],R[i]))return 0;
add(val[i],L[i],R[i]);
for(Re j=val[i]+1;j<=n;++j){//比val大的数
Re flag1=judge(j,1,L[i]-1),flag2=judge(j,R[i]+1,n);
if(!flag1&&!flag2)return 0;
else if(flag1&&!flag2)add(j,1,L[i]-1);
else if(flag2&&!flag1)add(j,R[i]+1,n);
else add_(j,L[i],R[i]);
}
}
}
return 1;//最后还要return 1
}
inline int dfs(Re x){
for(Re i=head[x],to;i;i=a[i].next)
if(!vis[to=a[i].to]){
vis[to]=1;
if(!match[to]||dfs(match[to])){
match[to]=x;return 1;
}
}
return 0;
}
int main(){
// freopen("informacije.in","r",stdin);
// freopen("informacije.out","w",stdout);
in(n),in(m);
for(Re i=1;i<=m;++i)in(op[i]),in(L[i]),in(R[i]),in(val[i]);
for(Re i=1;i<=n;++i)
for(Re j=1;j<=n;++j)
pan[i][j]=1;
if(!sakura())puts("-1");
else{
// Print();
for(Re i=1;i<=n;++i)
for(Re j=1;j<=n;++j)
if(pan[i][j])add(i,j);
for(Re i=1;i<=n;++i){
memset(vis,0,sizeof(vis));
if(!dfs(i))return !puts("-1");
}
for(Re i=1;i<=n;++i)printf("%d ",match[i]);
}
fclose(stdin);
fclose(stdout);
return 0;
}

【题解】Informacije [COCI2012]的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. Spring中ApplicationListener的使用

    背景 ApplicationListener是Spring事件机制的一部分,与抽象类ApplicationEvent类配合来完成ApplicationContext的事件机制. 如果容器中存在Appl ...

  2. 前端之javascript2

    js组成和标签获取元素 javascript组成 1.ECMAscript javascript的语法(变量.函数.循环语句等语法)2.DOM 文档对象模型 操作html和css的方法(比如通过id或 ...

  3. oracle学习笔记(八)——结果集元数据ResultSetMetaData以及ResultSet转为对应的实体类框架

    介绍 可用于获取关于 ResultSet 对象中列的类型和属性信息的对象,在持久框层框架(如:mybatis, hibernate)中被广泛的应用. 常用方法 int getColumnCount() ...

  4. SpringBoot 2.X从0到1实现邮件发送功能

    Spring中提供了JavaMailSender接口实现邮件发送功能,在SpringBoot2.X中也封装了发送邮件相关的Starter并且提供了自动化配置. 本文目录 一.添加对应的Starter二 ...

  5. 远程连接docker

    vim /usr/lib/systemd/system/docker.service ExecStart=/usr/bin/dockerd -H tcp://0.0.0.0:2375 -H unix: ...

  6. Python之dict(或对象)与json之间转化

    在Python语言中,json数据与dict字典以及对象之间的转化,是必不可少的操作. 在Python中自带json库.通过import json导入. 在json模块有2个方法, loads():将 ...

  7. javascript json的使用

    转自:http://blog.csdn.net/lushuaiyin/article/details/7061483 对于js使用json,首先到官网拷贝json.js文件,地址http://www. ...

  8. 记录TortoiseGit=>https请求/ssh请求配置

    ssh C:\Program Files\Git\usr\bin\ssh.exe https C:\Program Files\TortoiseGit\bin\TortoisePlink.exe

  9. Troubleshooting ORA-01555/ORA-01628/ORA-30036 During Export and Import (Doc ID 1579437.1)

    Troubleshooting ORA-01555/ORA-01628/ORA-30036 During Export and Import (Doc ID 1579437.1) APPLIES TO ...

  10. Linux中的硬链接和软链接的概念、区别及用法

    概念: 硬链接(hard link): A是B的硬链接(A和B都是文件名),则A的目录项中的inode节点号与B的目录项中的inode节点号相同,即一个inode节点对应两个不同的文件名,两个文件名指 ...