C 表达式中的汇编指令

asm 为 gcc 中的关键字,asm 表达式为在 C代码中嵌套汇编指令,该表达式只是单纯的替换出汇编代码,并不对汇编代码的含义进行解析。

asm 表达式有两种形式,第二种 asm-qualifiers 包含了 goto 语句。

第一种形式为常见的用法,AssemblerTemplate 和 OutputOperands 必须存在, 其中 Clobbers 存在需要 InputOperands 也出现。

asm asm-qualifiers ( AssemblerTemplate
: OutputOperands
[ : InputOperands
[ : Clobbers ] ]) asm asm-qualifiers ( AssemblerTemplate
:
: InputOperands
: Clobbers
: GotoLabels)

Qualifiers 的类型

  • volatile, 避免编译器的优化
  • inline, 内敛限定符,最小的体积
  • goto, 包含跳转指令

参数

  • AssemblerTemplate

    - 汇编指令模板是包含汇编器指令的文字字符串,编辑器替换引用输入,编译器不会解析该指令的含义。
  • OutputOperands

    - 由 AssemblerTemplate 中的指令修改的C变量的逗号分隔列表,允许使用空列表。
  • InputOperands

    - 由 AssemblerTemplate 中的指令读取的C变量的逗号分隔列表,允许使用空列表。
  • Clobbers

    - 用逗号分隔的寄存器列表或由 AssemblerTemplate 修改的值,不能出现在 OutputOperands 和 InputOperands 中被提及,允许使用空列表。
  • GotoLabels

    - 当使用asm的goto形式时,此部分包含 AssemblerTemplate 中的代码可能跳转到的所有C标签的列表。

AssemblerTemplate

汇编指令由一个字符串给出,多条汇编指令结合在一起使用的时候,中间以 \r\t 隔开,如

asm("inc %0\n\tinc %0" : "=r"(res) : "0"(res));

/APP
# 11 "asm.c" 1
inc %rax
inc %rax
# 0 "" 2
/NO_APPs

需要转义的字符:%, =, {, }, |

故在ATT汇编中,对寄存器进行操作的需要双 %%, 如 inc %%rax.

OutputOperands

操作数之间用逗号分隔。 每个操作数具有以下格式:

[ [asmSymbolicName] ] constraint (cvariablename)
  • asmSymbolicName

    - 为操作数指定名称,格式为 %[name]

    c // res = num asm("movq %[num], %[res]" : [res] "=r"(res) : [num] "m"(num));

    - 如果未指定名称使用数字, 从 output 域开始,第一个参数为 %0, 一次类推, 这里的 res 为 %0, num 为 %1

    c // res = num asm("movq %1, %0" : "=r"(res) : "m"(num));
  • constraint

    - 一个字符串常量,用于指定对操作数的存储的 约束, 需要以 "=" 或 "+" 开头
  • cvariablename

    - 指定一个C左值表达式来保存输出,通常是一个变量名。 括号是语法的必需部分

第一个参数为增加可读性使用的,现在我们有代码如下

int64_t res;
int64_t num = 1; asm("movq %[num], %[res]" : [res] "=r"(res) : [num] "m"(num));
asm("movq %1, %0" : "=r"(res) : "m"(num));
asm("movq %1, %0" : "=m"(res) : "m"(num));
asm("movq %1, %0" : "=r"(res) : "r"(num)); // 对应的汇编代码, 只保留asm表达式中的代码
# 13 "asm.c" 1
movq -16(%rbp), %rax // asm-1
# 0 "" 2
/NO_APP /APP
# 15 "asm.c" 1
movq -16(%rbp), %rax // asm-2
# 0 "" 2
/NO_APP /APP
# 17 "asm.c" 1
movq -16(%rbp), -8(%rbp) // asm-3
# 0 "" 2
/NO_APP /APP
# 19 "asm.c" 1
movq %rax, %rax // asm-4
# 0 "" 2
/NO_APP
  1. 使用名称替换和数字替换效果一样,见 asm-1 和 asm-2
  2. 约束的用法,这里使用比较简单通用的的两种情况,r 为通过寄存器寻址操作,m 通过内存寻址操作,所以看到当约束了 r 就对应寄存器的操作。
  3. 结果保存在 res 也就是 cvariablename 中

InputOperands

输入操作数使C变量和表达式中的值可用于汇编代码。

[ [asmSymbolicName] ] constraint (cexpression)
  • asmSymbolicName 和输出列表的用法完全一致
  • constraint 约束不能使用 =+. 可以使用 "0", 这表明在输出约束列表中(从零开始)的条目,指定的输入必须与输出约束位于同一位置。
int64_t res = 3;
int64_t num = 1;
asm("addq %1, %0" : "=g"(res) : "0"(num)); // 输入输出位置相同
movq $3, -8(%rbp)
movq $1, -16(%rbp)
movq -16(%rbp), %rax
/APP
# 32 "asm.c" 1
addq %rax, %rax
# 0 "" 2
/NO_APP
  • cexpression 可以不为左值,作为汇编表达式的输入值即可

Clobbers

破坏列表,主要用于指示编译器生成的汇编指令。

从asm表达式中看到输出操作数中列出条目的更改编译器是可以确定的,但内联汇编代码可能不仅对输出进行了修改。 例如,计算可能需要其他寄存器,或者处理器可能会由于特定汇编程序指令而破坏寄存器的值。 为了将这些更改通知编译器,在Clobber列表中列出这些会产生副作用的条目。 破坏列表条目可以是寄存器名称,也可以是特殊的破坏列表项(在下面列出)。 每个内容列表条目都是一个字符串常量,用双引号引起来并用逗号分隔。

  • 寄存器

      ```c
    asm volatile("movc3 %0, %1, %2"
    : /* No outputs. */
    : "r"(from), "r"(to), "g"(count)
    : "%rbx", "%rcx", "%rdx", "memory"); /APP
    # 25 "asm.c" 1
    movc3 %rax, %r8, -72(%rbp)
    # 0 "" 2
    /NO_APP
    ``` 可以看到使用到了 rax 寄存器,然后修改程序在 Clobbers 增加 %rax, 结果如下 ```c
    asm volatile("movc3 %0, %1, %2"
    : /* No outputs. */
    : "r"(from), "r"(to), "g"(count)
    : "%rax", "%rbx", "%rcx", "%rdx", "memory"); /APP
    # 25 "asm.c" 1
    movc3 %r8, %r9, -72(%rbp)
    # 0 "" 2
    /NO_APP
    ```
    编译器在产生的汇编代码中就未使用 %rax 寄存器了。
  • 特殊破坏列表项

    - "cc", 表示汇编代码修改了标志寄存器

    - "memory", 为了确保内存中包含正确的值,编译器可能需要在执行asm之前将特定的寄存器值刷新到内存中

编译器为了破坏列表项的值受到破坏,当这些条目是寄存器时,不对其进行使用;为特殊参数时,重新刷新得到最新的值。

约束

  • 一些基础的约束
约束名 说明
whitespace 空白字符被忽略
m 允许使用内存操作数,以及机器通常支持的任何类型的地址
o 允许使用内存操作数,但前提是地址是可偏移的
V 允许使用内存操作数,不可偏移的内存地址,与 "o'互斥
r 允许在通用寄存器中使用的寄存器操作数,其中可以指定寄存器,如 a(%rax), b(%rbx)
i 允许使用立即整数操作数
n 允许使用具有已知数值的立即整数操作数, ‘I’, ‘J’, ‘K’, … ‘P’ 更应该使用 n
F 允许使用浮点立即数
g 允许使用任何寄存器,内存或立即数整数操作数,但非通用寄存器除外
X 允许任何操作数, ‘0’, ‘1’, ‘2’, … ‘9’
p 允许使用有效内存地址的操作数
  • 标识符约束
标识符 说明
= 表示此操作数是由该指令写入的:先前的值将被丢弃并由新数据替换
+ 表示该操作数由指令读取和写入
& 表示(在特定替代方法中)此操作数是早期指令操作数,它是在使用输入操作数完成指令之前写入的,故输入操作数部分不能分配与输出操作数相同的寄存器
% 表示该操作数与后续操作数的可交换指令

内核示例

  1. x86 的内存屏障指令。
// 避免编译器的优化,声明此处内存可能发生破坏
#define barrier() asm volatile("" ::: "memory")
// 在32位的CPU下,lock 指令为锁总线,加上一条内存操作指令就达到了内存屏障的作用,64位的cpu已经有新增的 *fence 指令可以使用
// mb() 执行一个内存屏障作用的指令,为指定CPU操作;破坏列表声明 cc memory 指示避免编译器进行优化
#ifdef CONFIG_X86_32
#define mb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "mfence", \
X86_FEATURE_XMM2) ::: "memory", "cc")
#define rmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "lfence", \
X86_FEATURE_XMM2) ::: "memory", "cc")
#define wmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "sfence", \
X86_FEATURE_XMM2) ::: "memory", "cc")
#else
#define mb() asm volatile("mfence":::"memory")
#define rmb() asm volatile("lfence":::"memory")
#define wmb() asm volatile("sfence" ::: "memory")
#endif
  1. x86 下获取 current 的值
DECLARE_PER_CPU(struct task_struct *, current_task);

#define this_cpu_read_stable(var)	percpu_stable_op("mov", var)

static __always_inline struct task_struct *get_current(void)
{
return this_cpu_read_stable(current_task);
} #define percpu_stable_op(op, var) \
({ \
typeof(var) pfo_ret__; \
switch (sizeof(var)) { \
case 8: \
asm(op "q "__percpu_arg(P1)",%0" \
: "=r" (pfo_ret__) \
: "p" (&(var))); \
break; \
} \
pfo_ret__; \
})

current_task 为一个 struct task_struct 类型的指针,追踪宏调用,在x86-64 下命中了 case 8: 的汇编代码, 展开的代码为

asm("mov" "q ""%%""gs" ":" "%" "P1"",%0" : "=r" (pfo_ret__) : "p" (&(current_task)));
// 变换一下为
asm("movq %%gs:%P1, %0" : "=r"(pfo_ret__) : "p"(&(current_task)));

这行代码的含义为将 约束输入部分必须为有效的地址(p约束), 将CPU id(通过段寄存器gs和偏移通过GDT得到,这里后文分析了)通过寄存器(r约束)赋值给 pfo_ret__.

参考

GCC文档

C语言ASM汇编内嵌语法zz

C表达式中的汇编指令的更多相关文章

  1. C 表达式中的汇编指令

    asm 为 gcc 中的关键字,asm 表达式为在 C代码中嵌套汇编指令,该表达式只是单纯的替换出汇编代码,并不对汇编代码的含义进行解析. asm 表达式有两种形式,第二种 asm-qualifier ...

  2. [zhuan]arm中的汇编指令

    http://blog.csdn.net/qqliyunpeng/article/details/45116615 一. 带点的(一般都是ARM GNU伪汇编指令)   1. ".text& ...

  3. ARM中的---汇编指令

    一. 带点的(一般都是ARM GNU伪汇编指令) 1. ".text".".data".".bss" 依次表示的是"以下是代码段& ...

  4. C/C++中书写汇编指令

    汇编语言的指令格式目前有两种不同的标准:Windows下的汇编语言基本上都遵循Intel风格的语法,比如:MASM.NASM,Unix/Linux下的汇编语言基本上都遵循AT&T风格的语法. ...

  5. ARM中的汇编指令

    Arm指令,32位的指令集,一共有16条的基本指令,每条指令都可以按条件执行, 指令都是32bit的,高四位是条件码[31:28], Thumb指令,16位的指令集,执行效率比arm指令集要低,但是节 ...

  6. Uboot中汇编指令

    LDR(load register)指令将内存内容加载入通用寄存器 ARM是RISC结构,数据从内存到CPU之间的移动只能通过L/S指令来完成,也就是ldr/str指令.比如想把数据从内存中某处读取到 ...

  7. 计算机系统6-> 计组与体系结构3 | MIPS指令集(中)| MIPS汇编指令与机器表示

    上一篇计算机系统5-> 计组与体系结构2 | MIPS指令集(上)| 指令系统从顶层讲解了一个指令集 / 指令系统应当具备哪些特征和工作原理.这一篇就聚焦MIPS指令集(MIPS32),看看其汇 ...

  8. C语言中插入汇编nop指令

    工作过程中,有的时候需要打桩cycle,想在C语言中插入nop指令,可以采取的方法是 头文件中加入#inlude <stdio.h> 定义一个内联函数,然后调用这个函数,不过得测一下平台调 ...

  9. 学习linux内核时常碰到的汇编指令(2)

    转载:http://blog.sina.com.cn/s/blog_4be6adec01007xvh.html JNGE∶指令助记符——(有符号数比较)不大于且不等于转移(等价于JL).当SF和OF异 ...

随机推荐

  1. MRP进程起不来, 报错:ORA-00600: internal error code, arguments: [2619], [227424], [], [], [], [], [], [], [], [], [], []

    问题背景:客户数据库服务架构为一主一备,某日备库操作系统意外重启,重启后Oracle MRP进程起不来,报错:ORA-00600: internal error code, arguments: [2 ...

  2. Linux内存描述之内存页面page–Linux内存管理(四)

    服务器体系与共享存储器架构 日期 内核版本 架构 作者 GitHub CSDN 2016-06-14 Linux-4.7 X86 & arm gatieme LinuxDeviceDriver ...

  3. 【元学习】Meta Learning 介绍

    目录 元学习(Meta-learning) 元学习被用在了哪些地方? Few-Shot Learning(小样本学习) 最近的元学习方法如何工作 Model-Agnostic Meta-Learnin ...

  4. 基于STM32F1与NRF24L01模块的SPI简单通信

    一.前言 1.简介: 本文是基于STM32F1,将数据发送至NRF模块的寄存器,并将数据重新读取,通过串口发送出来的简单SPI单通信. 2.SPI简介: 调过STM8的都已经对SPI有所了解,调法都一 ...

  5. centos7 安装 mysql5.7 版本(全)

    centos 安装 版本说明 :centos7,mysql5.7 ,不是 centos7 可能有些命令不兼容 安装 mysql-server # 下载并安装 mysql yum wget -i -c ...

  6. u盘安装操作系统相关

    首先使用相关软件制作u盘启动盘,将所需要的系统镜像安装到u盘中 此时u盘中会出现一个EFI区(window可以看到,window7看不到,可以隐藏) 简单来说这个EFI分区中装的是一个低价的操作系统, ...

  7. 除法分块 luogu2261 (坑)

    除法分块 除法分块 是指使用分块计算的方法求S=∑i=1n⌊ki⌋S=\sum^{n}_{i=1}{\lfloor{\frac{k}{i}}\rfloor}S=i=1∑n​⌊ik​⌋的值. 举个例子. ...

  8. Python开发【第九篇】字典

    字典 字典是一种可变的容器,可以存储任意类型的数据 字典中的每个数据都是用键进行索引,而不像序列容器(str,list,tuole)可以用整数进行索引 字典中的数据没有先后顺序,字典的存储是无序的 字 ...

  9. 数据结构1_C---单链表的逆转

    通过C语言函数实现单链表的逆转操作 例: 输入数据1,2,3,4 输出数据4,3,2,1 一共三个文件: 头文件stulist,h :链表结点的定义,结点指针的定义 源文件stulist.c:具体的实 ...

  10. HDU 1198 Farm Irrigation(状态压缩+DFS)

    题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=1198 题目: Farm Irrigation Time Limit: 2000/1000 MS (Ja ...