前文Airflow的第一个DAG已经跑起来了我们的第一个任务. 本文就来丰富这个任务.

回顾我们的任务内容

  • 我们定义了DAG的名称为Hello-World, 这个叫dag_id,
  • 补充说明description
  • 定义了调度间隔schedule_interval, 这是一个cron表达式
  • 引入了一个bash任务
  • 有一个重要的参数default_args, 这是dag定义的参数

如何执行不同的任务

airflow里通过引入不同的operator来执行不同的操作. 目前,内置了一些:

https://github.com/apache/airflow/tree/master/airflow/operators

第三方也贡献了一些:

https://github.com/apache/airflow/tree/master/airflow/contrib/operators

还可以自己编写plugin, 制作自己的任务类型插件.

当想要使用这些插件的时候,只要引入

from airflow.operators.bash_operator import BashOperator
from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import BranchPythonOperator
from operators.rdbms_to_redis_operator import RDBMS2RedisOperator
from operators.rdbms_to_hive_operator import RDBMS2HiveOperator
from operators.hive_to_rdbms_operator import Hive2RDBMSOperator

然后填充需要的参数:

t1 = BashOperator(task_id="hello",
bash_command="echo 'Hello World, today is {{ ds }}'",
dag=dag)

可以参照https://github.com/apache/airflow/tree/master/airflow/example_dags 以及源码来使用这些任务插件。

如何获取任务执行日期

这个值得单独扯一篇文章, 这里简单带一下. 通过jinja模板变量可以获取任务日期.

以下几个变量用户基本够用

templated_command = """
echo "current bizdate is: {{ ds }} "
echo "current bizdate in number: {{ ds_nodash }} "
echo "7days after: {{ macros.ds_add(ds, 7)}} "
echo "5 days ago: {{ macros.ds_add(ds, -5) }} "
echo "bizdate iso8601 {{ ts }} "
echo "bizdate format: {{ execution_date.strftime("%d-%m-%Y") }} "
echo "bizdate 5 days ago format: {{ (execution_date - macros.timedelta(days=5)).strftime("%Y-%m-%d") }} " """ t1 = BashOperator(
task_id='print_date1',
bash_command=templated_command,
# on_success_callback=compass_utils.success_callback(dingding_conn_id='dingding_bigdata', receivers="ryanmiao"),
dag=dag)

执行结果日志为:

    echo "current bizdate is: 2019-09-28 "
echo "current bizdate in number: 20190928 "
echo "7days after: 2019-10-05 "
echo "5 days ago: 2019-09-23 "
echo "bizdate iso8601 2019-09-28T01:00:00+08:00 "
echo "bizdate format: 28-09-2019 "
echo "bizdate 5 days ago format: 2019-09-23 "

告警

任务自己跑, 跑的结果如何, 我们需要一个通知. 可以成功的时候告诉我, 也可以失败的时候告诉我.

default_args = {
'owner': 'ryanmiao',
'depends_on_past': False,
'start_date': datetime(2019, 5, 1, 9),
'email': ['ryan.miao@nf-3.com'],
'email_on_failure': False,
'email_on_retry': False,
# 'on_failure_callback': compass_utils.ding_failure_callback('dingding_bigdata'),
# 'on_success_callback': compass_utils.ding_success_callback('dingding_bigdata')
}

默认自带的email on failure邮件通知,需要在配置文件里设置email。当然,我们通常是有自己的通知服务的,还集成自己的认证之类的。所以,Airflow提供了通知回调。

on_failure_callback 一个Python函数,失败的时候执行

on_success_callback 一个Python函数,成功的时候执行

比如,我需要添加钉钉通知。

from airflow.contrib.operators.dingding_operator import DingdingOperator

def failure_callback(context):
"""
The function that will be executed on failure. :param context: The context of the executed task.
:type context: dict
"""
message = 'AIRFLOW TASK FAILURE TIPS:\n' \
'DAG: {}\n' \
'TASKS: {}\n' \
'Reason: {}\n' \
.format(context['task_instance'].dag_id,
context['task_instance'].task_id,
context['exception'])
return DingdingOperator(
task_id='dingding_success_callback',
dingding_conn_id='dingding_default',
message_type='text',
message=message,
at_all=True,
).execute(context) args['on_failure_callback'] = failure_callback

后台admin-connections去配置钉钉的群组token,然后这里引用connId即可。

同样的,我们可以使用http请求调用我们自己的通知服务啊,用来发邮件,打电话什么的,都可以自定义。后面介绍自定义插件来实现这种自定义通知功能。

DAG的任务依赖

dag的任务依赖定义很简单:

a >> b   b依赖a
a << b a依赖b
a >> b >> c 依赖可以串起来
[a,b] >> c 可以依赖多个

每个依赖语句通过换行分割, 最终会组装一个完整的依赖。

DAG的一些参数

先看看源码的注释

"""
A dag (directed acyclic graph) is a collection of tasks with directional
dependencies. A dag also has a schedule, a start date and an end date
(optional). For each schedule, (say daily or hourly), the DAG needs to run
each individual tasks as their dependencies are met. Certain tasks have
the property of depending on their own past, meaning that they can't run
until their previous schedule (and upstream tasks) are completed. DAGs essentially act as namespaces for tasks. A task_id can only be
added once to a DAG. :param dag_id: The id of the DAG
:type dag_id: str
:param description: The description for the DAG to e.g. be shown on the webserver
:type description: str
:param schedule_interval: Defines how often that DAG runs, this
timedelta object gets added to your latest task instance's
execution_date to figure out the next schedule
:type schedule_interval: datetime.timedelta or
dateutil.relativedelta.relativedelta or str that acts as a cron
expression
:param start_date: The timestamp from which the scheduler will
attempt to backfill
:type start_date: datetime.datetime
:param end_date: A date beyond which your DAG won't run, leave to None
for open ended scheduling
:type end_date: datetime.datetime
:param template_searchpath: This list of folders (non relative)
defines where jinja will look for your templates. Order matters.
Note that jinja/airflow includes the path of your DAG file by
default
:type template_searchpath: str or list[str]
:param template_undefined: Template undefined type.
:type template_undefined: jinja2.Undefined
:param user_defined_macros: a dictionary of macros that will be exposed
in your jinja templates. For example, passing ``dict(foo='bar')``
to this argument allows you to ``{{ foo }}`` in all jinja
templates related to this DAG. Note that you can pass any
type of object here.
:type user_defined_macros: dict
:param user_defined_filters: a dictionary of filters that will be exposed
in your jinja templates. For example, passing
``dict(hello=lambda name: 'Hello %s' % name)`` to this argument allows
you to ``{{ 'world' | hello }}`` in all jinja templates related to
this DAG.
:type user_defined_filters: dict
:param default_args: A dictionary of default parameters to be used
as constructor keyword parameters when initialising operators.
Note that operators have the same hook, and precede those defined
here, meaning that if your dict contains `'depends_on_past': True`
here and `'depends_on_past': False` in the operator's call
`default_args`, the actual value will be `False`.
:type default_args: dict
:param params: a dictionary of DAG level parameters that are made
accessible in templates, namespaced under `params`. These
params can be overridden at the task level.
:type params: dict
:param concurrency: the number of task instances allowed to run
concurrently
:type concurrency: int
:param max_active_runs: maximum number of active DAG runs, beyond this
number of DAG runs in a running state, the scheduler won't create
new active DAG runs
:type max_active_runs: int
:param dagrun_timeout: specify how long a DagRun should be up before
timing out / failing, so that new DagRuns can be created. The timeout
is only enforced for scheduled DagRuns, and only once the
# of active DagRuns == max_active_runs.
:type dagrun_timeout: datetime.timedelta
:param sla_miss_callback: specify a function to call when reporting SLA
timeouts.
:type sla_miss_callback: types.FunctionType
:param default_view: Specify DAG default view (tree, graph, duration,
gantt, landing_times)
:type default_view: str
:param orientation: Specify DAG orientation in graph view (LR, TB, RL, BT)
:type orientation: str
:param catchup: Perform scheduler catchup (or only run latest)? Defaults to True
:type catchup: bool
:param on_failure_callback: A function to be called when a DagRun of this dag fails.
A context dictionary is passed as a single parameter to this function.
:type on_failure_callback: callable
:param on_success_callback: Much like the ``on_failure_callback`` except
that it is executed when the dag succeeds.
:type on_success_callback: callable
:param access_control: Specify optional DAG-level permissions, e.g.,
"{'role1': {'can_dag_read'}, 'role2': {'can_dag_read', 'can_dag_edit'}}"
:type access_control: dict
:param is_paused_upon_creation: Specifies if the dag is paused when created for the first time.
If the dag exists already, this flag will be ignored. If this optional parameter
is not specified, the global config setting will be used.
:type is_paused_upon_creation: bool or None
"""

emmm, 这里就不一一拆解了,我倾向于用一个了解一个。用的时候对着看。

小结

dag的组成很简单, Python语法式的声明比起property和yaml的配置来说,更容易组织和理解。

定义好dag参数,定义任务类型Operator, 定义任务依赖就完事了。

认识Airflow的DAG的更多相关文章

  1. airflow删除dag不在页面显示

    当我们需要把dag删除的时候,遇到了删除了相应的dag文件,但页面还是显示 这个时候需要重启airflow 的webserver  ps -ef|egrep  rm -rf /home/airflow ...

  2. [AirFlow]AirFlow使用指南三 第一个DAG示例

    经过前两篇文章的简单介绍之后,我们安装了自己的AirFlow以及简单了解了DAG的定义文件.现在我们要实现自己的一个DAG. 1. 启动Web服务器 使用如下命令启用: airflow webserv ...

  3. [AirFlow]AirFlow使用指南二 DAG定义文件

    1. Example """ Code that goes along with the Airflow tutorial located at: https://git ...

  4. 调度系统Airflow的第一个DAG

    Airflow的第一个DAG 考虑了很久,要不要记录airflow相关的东西, 应该怎么记录. 官方文档已经有比较详细的介绍了,还有各种博客,我需要有一份自己的笔记吗? 答案就从本文开始了. 本文将从 ...

  5. 系统研究Airbnb开源项目airflow

    开源项目airflow的一点研究 调研了一些几个调度系统, airflow 更满意一些. 花了些时间写了这个博文, 这应该是国内技术圈中最早系统性研究airflow的文章了.  转载请注明出处 htt ...

  6. 【原创】大数据基础之Airflow(1)简介、安装、使用

    airflow 1.10.0 官方:http://airflow.apache.org/ 一 简介 Airflow is a platform to programmatically author, ...

  7. 搭建Airflow数据流调度器

    服务器使用的是centos系统,需要安装好pip和setuptools,同时注意更新安装的版本 接下来参考安装好Airflow Airflow 1.8 工作流平台搭建 http://blog.csdn ...

  8. apache airflow docker 运行简单试用

    airflow 是一个编排.调度和监控workflow的平台,由Airbnb开源,现在在Apache Software Foundation 孵化. airflow 将workflow编排为tasks ...

  9. Airflow使用入门指南

    Airflow能做什么 关注公众号, 查看更多 http://mp.weixin.qq.com/s/xPjXMc_6ssHt16J07BC7jA Airflow是一个工作流分配管理系统,通过有向非循环 ...

随机推荐

  1. ArcMap和ArcGIS Pro加载百度地图

    前面发布了两篇我用ArcBruTile开发用于ArcMap加载百度地图的插件ArcBruTileBaidu,放在网上后评论和反响还不错,还有两位大学同学通过百度搜索居然搜到我本人!文章和技术介绍也被网 ...

  2. MySQL数据库安装步骤

    目录 MySQL数据库安装 MySQL数据库安装 MySQL Windows下载地址:https://dev.mysql.com/downloads 我们这里选择5.6.45版本下载,下载zip. 点 ...

  3. HDU 6040

    题意略. 思路:题目就是在询问你m次,第k小是哪个数.首先我们可以想到直接排序后,即可O(1)来查找询问.但是题目中n的范围给的是1e7, 无法承受nlogn的复杂度.从而想到另外一种求静态第k小的方 ...

  4. CocosBuilder 学习笔记(3) AnimationManager 与 ccbi 文件解析

    [CocosBuilder]学习笔记目录 1. 相关的类 先介绍和AnimationManager相关的几个类: CCBSequence 时间线.有成员duration(时间线时间,默认10秒).na ...

  5. 杭电多校第九场 HDU6415 Rikka with Nash Equilibrium dp

    Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K ...

  6. cesium中json,geojson,stk,影像切片等数据的加载

    cesium中json.topojson.geojson.stk,影像切片等数据的加载 一.geojson.topojson,json数据的加载 不管是哪种json,都可以通过GeoJsonDataS ...

  7. H5 的 sessionStorage和localStorage

    1) H5 新增的 sessionStorage 和 localStorage 的区别 sessionStorage 和 java 的 session 差不多,可以短时间存储信息,电脑浏览器常用ses ...

  8. Erlang模块ets翻译

    概要: 内置的存储 描述: 这个模块是Erlang内置存储BIFs的接口.这些提供了在Erlang运行时系统中存储大量数据的能力,并且能够对数据进行持续的访问时间.(在ordered_set的情况下, ...

  9. 使用FreePBX和第三方线路对接

    首先搭建好相关环境 在FreePBX的web-gui控制界面进行操作. 通信接口连接--->中继  先创建一条中继线路: 创建中继 设置这条线路 优先级为0 中继名: 设置一个名字 Outgoi ...

  10. volatile的工作原理

    volatile的特性: volatile可见性:对一个volatile的读,总可以看到对这个变量最终的写: volatile原子性:volatile对单个读/写具有原子性(32位Long.Doubl ...