07.Django学习之model进阶
一 QuerySet
可切片
使用Python 的切片语法来限制查询集
记录的数目 。它等同于SQL 的LIMIT
和OFFSET
子句。
>>> Entry.objects.all()[:5] # (LIMIT 5)
>>> Entry.objects.all()[5:10] # (OFFSET 5 LIMIT 5)
不支持负的索引(例如Entry.objects.all()[-1]
)。通常,查询集
的切片返回一个新的查询集
—— 它不会执行查询。
可迭代
articleList=models.Article.objects.all()
for article in articleList:
print(article.title)
惰性查询
查询集
是惰性执行的 —— 创建查询集
不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集
需要求值时,Django 才会真正运行这个查询。(关于惰性是不是在迭代器的地方听过呀)
queryResult=models.Article.objects.all() # not hits database,通过看到的打印的翻译出来的sql语句记录,你会发现单纯的这句话并没有sql语句打印
print(queryResult) # hits database
for article in queryResult:
print(article.title) # hits database
if判断的时候也会执行,if queryResult:pass
一般来说,只有在“请求”查询集
的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集
通过访问数据库来求值。 关于求值发生的准确时间,参见何时计算查询集。
缓存机制
每个查询集
都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。叫做queryset缓存空间
在一个新创建的查询集
中,缓存为空。首次对查询集
进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到查询集(非简单查询的查询结果,简单查询往下看。)
的缓存中并返回明确请求的结果(例如,如果正在迭代查询集
,则返回下一个结果)。接下来对该查询集
的求值将重用缓存的结果。
请牢记这个缓存行为,因为对查询集
使用不当的话,它会坑你的。例如,下面的语句创建两个查询集
,对它们求值,然后扔掉它们:
print([a.title for a in models.Article.objects.all()])
print([a.create_time for a in models.Article.objects.all()])
这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存查询集
并重新使用它:
queryResult=models.Article.objects.all()
print([a.title for a in queryResult])
print([a.create_time for a in queryResult])
何时查询集不会被缓存?
查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存。
例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:
>>> queryset = Entry.objects.all()
>>> print queryset[5] # Queries the database
>>> print queryset[5] # Queries the database again
然而,如果已经对全部查询集求值过,则将检查缓存:
>>> queryset = Entry.objects.all()
>>> [entry for entry in queryset] # Queries the database
>>> print queryset[5] # Uses cache
>>> print queryset[5] # Uses cache
下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:
>>> [entry for entry in queryset]
>>> bool(queryset)
>>> entry in queryset
>>> list(queryset)
注意:简单地打印查询集不会填充缓存。
queryResult=models.Article.objects.all()
print(queryResult) # hits database
print(queryResult) # hits database
exists()与iterator()方法
exists:
简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:
if queryResult.exists():
#SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=()
print("exists...")
iterator:
当queryset非常巨大时,cache会成为问题。
处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。
objs = Book.objects.all().iterator() --- objs变成了一个生成器,生成器也是迭代器,但是生成器有个特点,就是取完值就不能再取了
# iterator()可以一次只从数据库获取少量数据,这样可以节省内存
for obj in objs:
print(obj.title)
#BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了
for obj in objs:
print(obj.title)
当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。
总结:
queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。
二 中介模型
处理类似搭配 pizza 和 topping 这样简单的多对多关系时,使用标准的ManyToManyField
就可以了。但是,有时你可能需要关联数据到两个模型之间的关系上。
例如,有这样一个应用,它记录音乐家所属的音乐小组。我们可以用一个ManyToManyField
表示小组和成员之间的多对多关系。但是,有时你可能想知道更多成员关系的细节,比如成员是何时加入小组的。
对于这些情况,Django 允许你指定一个中介模型来定义多对多关系。 你可以将其他字段放在中介模型里面。源模型的ManyToManyField
字段将使用through
参数指向中介模型。对于上面的音乐小组的例子,代码如下:
from django.db import models
class Person(models.Model):
name = models.CharField(max_length=128)
def __str__(self): # __unicode__ on Python 2
return self.name
class Group(models.Model):
name = models.CharField(max_length=128)
members = models.ManyToManyField(Person, through='Membership')
def __str__(self): # __unicode__ on Python 2
return self.name
class Membership(models.Model):
person = models.ForeignKey(Person)
group = models.ForeignKey(Group)
date_joined = models.DateField()
invite_reason = models.CharField(max_length=64)
既然你已经设置好ManyToManyField
来使用中介模型(在这个例子中就是Membership
),接下来你要开始创建多对多关系。你要做的就是创建中介模型的实例:
>>> ringo = Person.objects.create(name="Ringo Starr")
>>> paul = Person.objects.create(name="Paul McCartney")
>>> beatles = Group.objects.create(name="The Beatles")
>>> m1 = Membership(person=ringo, group=beatles,
... date_joined=date(1962, 8, 16),
... invite_reason="Needed a new drummer.")
>>> m1.save()
>>> beatles.members.all()
[<Person: Ringo Starr>]
>>> ringo.group_set.all()
[<Group: The Beatles>]
>>> m2 = Membership.objects.create(person=paul, group=beatles,
... date_joined=date(1960, 8, 1),
... invite_reason="Wanted to form a band.")
>>> beatles.members.all()
[<Person: Ringo Starr>, <Person: Paul McCartney>]
与普通的多对多字段不同,你不能使用add
、 create
和赋值语句(比如,beatles.members = [...]
)来创建关系:
# THIS WILL NOT WORK
>>> beatles.members.add(john)
# NEITHER WILL THIS
>>> beatles.members.create(name="George Harrison")
# AND NEITHER WILL THIS
>>> beatles.members = [john, paul, ringo, george]
为什么不能这样做? 这是因为你不能只创建 Person
和 Group
之间的关联关系,你还要指定 Membership
模型中所需要的所有信息;而简单的add
、create
和赋值语句是做不到这一点的。所以它们不能在使用中介模型的多对多关系中使用。此时,唯一的办法就是创建中介模型的实例。
remove()
方法被禁用也是出于同样的原因。但是clear()
方法却是可用的。它可以清空某个实例所有的多对多关系:
>>> # Beatles have broken up
>>> beatles.members.clear()
>>> # Note that this deletes the intermediate model instances
>>> Membership.objects.all()
[]
三 查询优化
表数据
class UserInfo(AbstractUser):
"""
用户信息
"""
nid = models.BigAutoField(primary_key=True)
nickname = models.CharField(verbose_name='昵称', max_length=32)
telephone = models.CharField(max_length=11, blank=True, null=True, unique=True, verbose_name='手机号码')
avatar = models.FileField(verbose_name='头像',upload_to = 'avatar/',default="/avatar/default.png")
create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True)
fans = models.ManyToManyField(verbose_name='粉丝们',
to='UserInfo',
through='UserFans',
related_name='f',
through_fields=('user', 'follower'))
def __str__(self):
return self.username
class UserFans(models.Model):
"""
互粉关系表
"""
nid = models.AutoField(primary_key=True)
user = models.ForeignKey(verbose_name='博主', to='UserInfo', to_field='nid', related_name='users')
follower = models.ForeignKey(verbose_name='粉丝', to='UserInfo', to_field='nid', related_name='followers')
class Blog(models.Model):
"""
博客信息
"""
nid = models.BigAutoField(primary_key=True)
title = models.CharField(verbose_name='个人博客标题', max_length=64)
site = models.CharField(verbose_name='个人博客后缀', max_length=32, unique=True)
theme = models.CharField(verbose_name='博客主题', max_length=32)
user = models.OneToOneField(to='UserInfo', to_field='nid')
def __str__(self):
return self.title
class Category(models.Model):
"""
博主个人文章分类表
"""
nid = models.AutoField(primary_key=True)
title = models.CharField(verbose_name='分类标题', max_length=32)
blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid')
class Article(models.Model):
nid = models.BigAutoField(primary_key=True)
title = models.CharField(max_length=50, verbose_name='文章标题')
desc = models.CharField(max_length=255, verbose_name='文章描述')
read_count = models.IntegerField(default=0)
comment_count= models.IntegerField(default=0)
up_count = models.IntegerField(default=0)
down_count = models.IntegerField(default=0)
category = models.ForeignKey(verbose_name='文章类型', to='Category', to_field='nid', null=True)
create_time = models.DateField(verbose_name='创建时间')
blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid')
tags = models.ManyToManyField(
to="Tag",
through='Article2Tag',
through_fields=('article', 'tag'),
)
class ArticleDetail(models.Model):
"""
文章详细表
"""
nid = models.AutoField(primary_key=True)
content = models.TextField(verbose_name='文章内容', )
article = models.OneToOneField(verbose_name='所属文章', to='Article', to_field='nid')
class Comment(models.Model):
"""
评论表
"""
nid = models.BigAutoField(primary_key=True)
article = models.ForeignKey(verbose_name='评论文章', to='Article', to_field='nid')
content = models.CharField(verbose_name='评论内容', max_length=255)
create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True)
parent_comment = models.ForeignKey('self', blank=True, null=True, verbose_name='父级评论')
user = models.ForeignKey(verbose_name='评论者', to='UserInfo', to_field='nid')
up_count = models.IntegerField(default=0)
def __str__(self):
return self.content
class ArticleUpDown(models.Model):
"""
点赞表
"""
nid = models.AutoField(primary_key=True)
user = models.ForeignKey('UserInfo', null=True)
article = models.ForeignKey("Article", null=True)
models.BooleanField(verbose_name='是否赞')
class CommentUp(models.Model):
"""
点赞表
"""
nid = models.AutoField(primary_key=True)
user = models.ForeignKey('UserInfo', null=True)
comment = models.ForeignKey("Comment", null=True)
class Tag(models.Model):
nid = models.AutoField(primary_key=True)
title = models.CharField(verbose_name='标签名称', max_length=32)
blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid')
class Article2Tag(models.Model):
nid = models.AutoField(primary_key=True)
article = models.ForeignKey(verbose_name='文章', to="Article", to_field='nid')
tag = models.ForeignKey(verbose_name='标签', to="Tag", to_field='nid')
select_related
简单使用
对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化。
select_related 返回一个QuerySet
,当执行它的查询时它沿着外键关系查询关联的对象的数据。它会生成一个复杂的查询并引起性能的损耗,但是在以后使用外键关系时将不需要数据库查询。
简单说,在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。
下面的例子解释了普通查询和select_related()
查询的区别。
查询id=2的文章的分类名称,下面是一个标准的查询:
# Hits the database.
article=models.Article.objects.get(nid=2)
# Hits the database again to get the related Blog object.
print(article.category.title)
'''
SELECT
"blog_article"."nid",
"blog_article"."title",
"blog_article"."desc",
"blog_article"."read_count",
"blog_article"."comment_count",
"blog_article"."up_count",
"blog_article"."down_count",
"blog_article"."category_id",
"blog_article"."create_time",
"blog_article"."blog_id",
"blog_article"."article_type_id"
FROM "blog_article"
WHERE "blog_article"."nid" = 2; args=(2,)
SELECT
"blog_category"."nid",
"blog_category"."title",
"blog_category"."blog_id"
FROM "blog_category"
WHERE "blog_category"."nid" = 4; args=(4,)
'''
如果我们使用select_related()函数:
articleList=models.Article.objects.select_related("category").all()
for article_obj in articleList:
# Doesn't hit the database, because article_obj.category
# has been prepopulated in the previous query.
print(article_obj.category.title)
SELECT
"blog_article"."nid",
"blog_article"."title",
"blog_article"."desc",
"blog_article"."read_count",
"blog_article"."comment_count",
"blog_article"."up_count",
"blog_article"."down_count",
"blog_article"."category_id",
"blog_article"."create_time",
"blog_article"."blog_id",
"blog_article"."article_type_id",
"blog_category"."nid",
"blog_category"."title",
"blog_category"."blog_id"
FROM "blog_article"
LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid");
多外键查询
这是针对category的外键查询,如果是另外一个外键呢?让我们一起看下:
article=models.Article.objects.select_related("category").get(nid=1)
print(article.articledetail)
观察logging结果,发现依然需要查询两次,所以需要改为:
article=models.Article.objects.select_related("category","articledetail").get(nid=1)
print(article.articledetail)
或者:
article=models.Article.objects .select_related("category") .select_related("articledetail") .get(nid=1) # django 1.7 支持链式操作
print(article.articledetail)
SELECT
"blog_article"."nid",
"blog_article"."title",
......
"blog_category"."nid",
"blog_category"."title",
"blog_category"."blog_id",
"blog_articledetail"."nid",
"blog_articledetail"."content",
"blog_articledetail"."article_id"
FROM "blog_article"
LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid")
LEFT OUTER JOIN "blog_articledetail" ON ("blog_article"."nid" = "blog_articledetail"."article_id")
WHERE "blog_article"."nid" = 1; args=(1,)
深层查询
# 查询id=1的文章的用户姓名
article=models.Article.objects.select_related("blog").get(nid=1)
print(article.blog.user.username)
依然需要查询两次:
SELECT
"blog_article"."nid",
"blog_article"."title",
......
"blog_blog"."nid",
"blog_blog"."title",
FROM "blog_article" INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid")
WHERE "blog_article"."nid" = 1;
SELECT
"blog_userinfo"."password",
"blog_userinfo"."last_login",
......
FROM "blog_userinfo"
WHERE "blog_userinfo"."nid" = 1;
这是因为第一次查询没有query到userInfo表,所以,修改如下:
article=models.Article.objects.select_related("blog__user").get(nid=1)
print(article.blog.user.username)
SELECT
"blog_article"."nid", "blog_article"."title",
......
"blog_blog"."nid", "blog_blog"."title",
......
"blog_userinfo"."password", "blog_userinfo"."last_login",
......
FROM "blog_article"
INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid")
INNER JOIN "blog_userinfo" ON ("blog_blog"."user_id" = "blog_userinfo"."nid")
WHERE "blog_article"."nid" = 1;
总结
- select_related主要针一对一和多对一关系进行优化。
- select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
- 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。
- 没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
- 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
- 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
- Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。
prefetch_related()
对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。
prefetch_related()和select_related()的设计目的很相似,都是为了减少SQL查询的数量,但是实现的方式不一样。后者是通过JOIN语句,在SQL查询内解决问题。但是对于多对多关系,使用SQL语句解决就显得有些不太明智,因为JOIN得到的表将会很长,会导致SQL语句运行时间的增加和内存占用的增加。若有n个对象,每个对象的多对多字段对应Mi条,就会生成Σ(n)Mi 行的结果表。
prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。
# 查询所有文章关联的所有标签
article_obj=models.Article.objects.all()
for i in article_obj:
print(i.tags.all()) #4篇文章: hits database 5
改为prefetch_related:
# 查询所有文章关联的所有标签
article_obj=models.Article.objects.prefetch_related("tags").all()
for i in article_obj:
print(i.tags.all()) #4篇文章: hits database 2
SELECT "blog_article"."nid",
"blog_article"."title",
......
FROM "blog_article";
SELECT
("blog_article2tag"."article_id") AS "_prefetch_related_val_article_id",
"blog_tag"."nid",
"blog_tag"."title",
"blog_tag"."blog_id"
FROM "blog_tag"
INNER JOIN "blog_article2tag" ON ("blog_tag"."nid" = "blog_article2tag"."tag_id")
WHERE "blog_article2tag"."article_id" IN (1, 2, 3, 4);
四 extra
extra(select=None, where=None, params=None,
tables=None, order_by=None, select_params=None)
有些情况下,Django的查询语法难以简单的表达复杂的 WHERE
子句,对于这种情况, Django 提供了 extra()
QuerySet
修改机制 — 它能在 QuerySet
生成的SQL从句中注入新子句
extra可以指定一个或多个 参数
,例如 select
, where
or tables
. 这些参数都不是必须的,但是你至少要使用一个!要注意这些额外的方式对不同的数据库引擎可能存在移植性问题.(因为你在显式的书写SQL语句),除非万不得已,尽量避免这样做
参数之select
The select
参数可以让你在 SELECT
从句中添加其他字段信息,它应该是一个字典,存放着属性名到 SQL 从句的映射。
queryResult=models.Article .objects.extra(select={'is_recent': "create_time > '2017-09-05'"})
结果集中每个 Entry 对象都有一个额外的属性is_recent, 它是一个布尔值,表示 Article对象的create_time 是否晚于2017-09-05.
练习:
# in sqlite:
article_obj=models.Article.objects .filter(nid=1) .extra(select={"standard_time":"strftime('%%Y-%%m-%%d',create_time)"}) .values("standard_time","nid","title")
print(article_obj)
# <QuerySet [{'title': 'MongoDb 入门教程', 'standard_time': '2017-09-03', 'nid': 1}]>
参数之where
/ tables
您可以使用where
定义显式SQL WHERE
子句 - 也许执行非显式连接。您可以使用tables
手动将表添加到SQL FROM
子句。
where
和tables
都接受字符串列表。所有where
参数均为“与”任何其他搜索条件。
举例来讲:
queryResult=models.Article .objects.extra(where=['nid in (1,3) OR title like "py%" ','nid>2'])
整体插入
创建对象时,尽可能使用bulk_create()来减少SQL查询的数量。例如:
Entry.objects.bulk_create([
Entry(headline="Python 3.0 Released"),
Entry(headline="Python 3.1 Planned")
])
...更优于:
Entry.objects.create(headline="Python 3.0 Released")
Entry.objects.create(headline="Python 3.1 Planned")
注意该方法有很多注意事项,所以确保它适用于你的情况。
这也可以用在ManyToManyFields中,所以:
my_band.members.add(me, my_friend)
...更优于:
my_band.members.add(me)
my_band.members.add(my_friend)
...其中Bands和Artists具有多对多关联。
07.Django学习之model进阶的更多相关文章
- Django学习之model进阶
一 QuerySet 可切片 使用Python 的切片语法来限制查询集记录的数目 .它等同于SQL 的LIMIT 和OFFSET 子句. >>> Entry.objects.al ...
- django学习之Model(二)
继续(一)的内容: 1-跨文件的Models 在文件头部import进来,然后用ForeignKey关联上: from django.db import models from geography.m ...
- Django学习笔记(进阶篇)
Django学习笔记(进阶篇):http://www.cnblogs.com/wupeiqi/articles/5246483.html
- django学习之Model(一)
认认真真学Django,从现在开始. 学习资料来源于官方网站:https://docs.djangoproject.com/en/1.6/ 1-新建一个models.py from django.db ...
- django学习之Model(五)MakingQuery
接着上篇. 10-一次更新多个对象 有时想要对QuerySet中的所有对象的某一个field来设定一个值,这时候可以像下边这样用update(): # Update all the headlines ...
- django学习之Model(三)QuerySet
接下来主要学习Models中的Making queries 写好models.py后,django会自动提供一个数据库的抽象API,来实现CRUD(create, retrieve, update, ...
- django学习之Model(四)MakingQuery
上一篇写到MakingQuey中的filter,本篇接着来. 10)-扩展多值的关系 如果对一个ManyToManyField或ForeignKey的表进行filter过滤查询的话,有2中方法可以用. ...
- django 学习之model操作(想细化)
一.Field选项 null=True 数据库为空 blank=True admin相关为空 choices:choices意味着静态数据的变化不会太大. db_column: 用于此字段的数据库的列 ...
- django学习之——Model
打开 settings.py 找到 DATABASE 配置我们的数据库,(MySQL) # Database # https://docs.djangoproject.com/en/1.7/ref/ ...
随机推荐
- 台式机主机u盘安装centos7报错及注意事项
利用UltraISO制作U盘启动安装台式机CentOS7系统:流程及报错解决 一.制作U盘 1.首先打开UltraISO软件,尽量下载最新版的 2.点击工具栏中的第二个打开镜像文件工具,如图红色方框标 ...
- 01 - zabbix | LLD自动发现
01 - zabbix | LLD自动发现 1. 原理 zabbix支持设置变量,用{#VAR_NAME}来表示.然后有一些系统保留的变量 2. 设置 2.1 交换机电源自动发现 名字写好后进进入 ...
- 实战jmeter入门压测接口性能
什么是Jmeter? 是Apache组织开发的基于Java的压力测试工具. 准备工作: 一.安装配置好环境及压测工具 Jmeter下载地址:http://mirrors.tuna.tsinghua.e ...
- unity_UGUI养成之路02
1.技能的冷确效果 2.背包的分页效果 1创建背包的总面板,并添加ToggleGroup组件 2.物品面板的实现 3.背包分页的实现 注意:添加了Toggle组件的游戏对象不能再添加button组件. ...
- unity之局域网
Unity自5.1以后支持新版的网络系统Unet,Unet是什么,优缺点是什么,和以前的网络系统有什么区别,请自行去百度.本篇要实现的功能是创建网络游戏的Player主角,以及实现移动同步.本教程来源 ...
- Worker Service in ASP .NET Core
介绍 提到 ASP.NET Core,我们多半会想到 ASP.NET MVC.ASP.NET Web API.Razor page 及 Blazor.随着 .NET Core 3.0 的推出,今天会介 ...
- 转载-SpringBoot开发案例之整合日志管理
转载:https://cloud.tencent.com/developer/article/1097579 有一种力量无人能抵挡,它永不言败生来倔强.有一种理想照亮了迷茫,在那写满荣耀的地方. 00 ...
- python中的全局变量
1. 在函数中定义的局部变量如果和全局变量同名,则会使用局部变量(即隐藏全局变量). 示例: x = 1 def func(): x = 2 print x func() print x 运行结果: ...
- CF #535 (Div. 3) E2 Array and Segments (Hard version) 利用线段树进行区间转移
传送门 题意: 有m个区间,n个a[ i ] , 选择若干个区间,使得整个数组中的最大值和最小值的差值最小.n<=1e5,m<=300; 思路: 可以知道每个i,如果一个区间包含这个 ...
- Educational Codeforces Round 43 E&976E. Well played! 贪心
传送门:http://codeforces.com/contest/976/problem/E 参考:https://www.cnblogs.com/void-f/p/8978658.html 题意: ...