Sometimes when working on a large project, I find it useful to figure out all the places from which some function or method is called. Moreover, more often than not I don't just want the immediate caller, but the whole call stack. This is most useful in two scenarios - when debugging and when trying to figure out how some code works.

One possible solution is to use a debugger - run the program within a debugger, place a breakpoint in the interesting place, examine call stack when stopped. While this works and can sometimes be very useful, I personally prefer a more programmatic approach. I want to change the code in a way that will print out the call stack in every place I find interesting. Then I can use grepping and more sophisticated tools to analyze the call logs and thus gain a better understanding of the workings of some piece of code.

In this post, I want to present a relatively simple method to do this. It's aimed mainly at Linux, but should work with little modification on other Unixes (including OS X).

Obtaining the backtrace - libunwind

I'm aware of three reasonably well-known methods of accessing the call stack programmatically:

  1. The gcc builtin macro __builtin_return_address: very crude, low-level approach. This obtains the return address of the function on each frame on the stack. Note: just the address, not the function name. So extra processing is required to obtain the function name.
  2. glibc's backtrace and backtrace_symbols: can obtain the actual symbol names for the functions on the call stack.
  3. libunwind

Between the three, I strongly prefer libunwind, as it's the most modern, widespread and portable solution. It's also more flexible than backtrace, being able to provide extra information such as values of CPU registers at each stack frame.

Moreover, in the zoo of system programming, libunwind is the closest to the "official word" you can get these days. For example, gcc can use libunwind for implementing zero-cost C++ exceptions (which requires stack unwinding when an exception is actually thrown) [1]. LLVM also has a re-implementation of the libunwind interface in libc++, which is used for unwinding in LLVM toolchains based on this library.

Code sample

Here's a complete code sample for using libunwind to obtain the backtrace from an arbitrary point in the execution of a program. Refer to the libunwind documentation for more details about the API functions invoked here:

#define UNW_LOCAL_ONLY
#include <libunwind.h>
#include <stdio.h> // Call this function to get a backtrace.
void backtrace() {
unw_cursor_t cursor;
unw_context_t context; // Initialize cursor to current frame for local unwinding.
unw_getcontext(&context);
unw_init_local(&cursor, &context); // Unwind frames one by one, going up the frame stack.
while (unw_step(&cursor) > 0) {
unw_word_t offset, pc;
unw_get_reg(&cursor, UNW_REG_IP, &pc);
if (pc == 0) {
break;
}
printf("0x%lx:", pc); char sym[256];
if (unw_get_proc_name(&cursor, sym, sizeof(sym), &offset) == 0) {
printf(" (%s+0x%lx)\n", sym, offset);
} else {
printf(" -- error: unable to obtain symbol name for this frame\n");
}
}
} void foo() {
backtrace(); // <-------- backtrace here!
} void bar() {
foo();
} int main(int argc, char **argv) {
bar(); return 0;
}

  

 

libunwind is easy to install from source or as a package. I just built it from source with the usual configuremake and make install sequence and placed it into /usr/local/lib.

Once you have libunwind installed in a place the compiler can find [2], compile the code snippet with:

gcc -o libunwind_backtrace -Wall -g libunwind_backtrace.c -lunwind

Finally, run:

$ LD_LIBRARY_PATH=/usr/local/lib ./libunwind_backtrace
0x400958: (foo+0xe)
0x400968: (bar+0xe)
0x400983: (main+0x19)
0x7f6046b99ec5: (__libc_start_main+0xf5)
0x400779: (_start+0x29)

So we get the complete call stack at the point where backtrace is called. We can obtain the function symbol names and the address of the instruction where the call was made (more precisely, the return address which is the next instruction).

Sometimes, however, we want not only the caller's name, but also the call location (source file name + line number). This is useful when one function calls another from multiple locations and we want to pinpoint which one is actually part of a given call stack. libunwind gives us the call address, but nothing beyond. Fortunately, it's all in the DWARF information of the binary, and given the address we can extract the exact call location in a number of ways. The simplest is probably to call addr2line:

$ addr2line 0x400968 -e libunwind_backtrace
libunwind_backtrace.c:

We pass the PC address to the left of the bar frame to addr2line and get the file name and line number.

Alternatively, we can use the dwarf_decode_address example from pyelftools to obtain the same information:

$ python <path>/dwarf_decode_address.py 0x400968 libunwind_backtrace
Processing file: libunwind_backtrace
Function: bar
File: libunwind_backtrace.c
Line:

If printing out the exact locations is important for you during the backtrace call, you can also go fully programmatic by using libdwarf to open the executable and read this information from it, in the backtrace call. There's a section and a code sample about a very similar task in my blog post on debuggers.

C++ and mangled function names

The code sample above works well, but these days one is most likely writing C++ code and not C, so there's a slight problem. In C++, names of functions and methods are mangled. This is essential to make C++ features like function overloading, namespaces and templates work. Let's say the actual call sequence is:

namespace ns {

template <typename T, typename U>
void foo(T t, U u) {
backtrace(); // <-------- backtrace here!
} } // namespace ns template <typename T>
struct Klass {
T t;
void bar() {
ns::foo(t, true);
}
}; int main(int argc, char** argv) {
Klass<double> k;
k.bar(); return ;
}

The backtrace printed will then be:

0x400b3d: (_ZN2ns3fooIdbEEvT_T0_+0x17)
0x400b24: (_ZN5KlassIdE3barEv+0x26)
0x400af6: (main+0x1b)
0x7fc02c0c4ec5: (__libc_start_main+0xf5)
0x4008b9: (_start+0x29)

Oops, that's not nice. While some seasoned C++ veterans can usually make sense of simple mangled names (kinda like system programmers who can read text from hex ASCII), when the code is heavily templated this can get ugly very quickly.

One solution is to use a command-line tool - c++filt:

$ c++filt _ZN2ns3fooIdbEEvT_T0_
void ns::foo<double, bool>(double, bool)

However, it would be nicer if our backtrace dumper would print the demangled name directly. Luckily, this is pretty easy to do, using the cxxabi.h API that's part of libstdc++ (more precisely, libsupc++). libc++ also provides it in the low-level libc++abi. All we need to do is call abi::__cxa_demangle. Here's a complete example:

#define UNW_LOCAL_ONLY
#include <cxxabi.h>
#include <libunwind.h>
#include <cstdio>
#include <cstdlib> void backtrace() {
unw_cursor_t cursor;
unw_context_t context; // Initialize cursor to current frame for local unwinding.
unw_getcontext(&context);
unw_init_local(&cursor, &context); // Unwind frames one by one, going up the frame stack.
while (unw_step(&cursor) > ) {
unw_word_t offset, pc;
unw_get_reg(&cursor, UNW_REG_IP, &pc);
if (pc == ) {
break;
}
std::printf("0x%lx:", pc); char sym[];
if (unw_get_proc_name(&cursor, sym, sizeof(sym), &offset) == ) {
char* nameptr = sym;
int status;
char* demangled = abi::__cxa_demangle(sym, nullptr, nullptr, &status);
if (status == ) {
nameptr = demangled;
}
std::printf(" (%s+0x%lx)\n", nameptr, offset);
std::free(demangled);
} else {
std::printf(" -- error: unable to obtain symbol name for this frame\n");
}
}
} namespace ns { template <typename T, typename U>
void foo(T t, U u) {
backtrace(); // <-------- backtrace here!
} } // namespace ns template <typename T>
struct Klass {
T t;
void bar() {
ns::foo(t, true);
}
}; int main(int argc, char** argv) {
Klass<double> k;
k.bar(); return ;
}

This time, the backtrace is printed with all names nicely demangled:

$ LD_LIBRARY_PATH=/usr/local/lib ./libunwind_backtrace_demangle
0x400b59: (void ns::foo<double, bool>(double, bool)+0x17)
0x400b40: (Klass<double>::bar()+0x26)
0x400b12: (main+0x1b)
0x7f6337475ec5: (__libc_start_main+0xf5)
0x4008b9: (_start+0x29)

Obtaining the backtrace - libunwind的更多相关文章

  1. 高效获得Linux函数调用栈/backtrace的方法【转】

    转自:https://blog.csdn.net/littlefang/article/details/42295803 有四种方法可以获得Linux的函数调用堆栈,参见CALL STACK TRAC ...

  2. Obtaining Query Count Without executing a Query in Oracle D2k

    Obtaining Query Count Without executing a Query in Oracle D2k Obtaining a count of records that will ...

  3. iOS 崩溃日志 Backtrace的符号化

    iOS的崩溃日志配合dsym文件可以找到崩溃时的backtrace,这是解决崩溃的最重要的信息. 如果是在同一台mac上打包, 导入crash log时候会自动将backtrace符号化,可以看到方法 ...

  4. CGContextTranslateCTM: invalid context 0x0. If you want to see the backtrace, please set CG_CONTEXT_SHOW_BACKTRACE environmental variable.

    最近在测试的过程中, 发现了SpringBoar的一个问题: SpringBoard[53] <Error>: CGContextTranslateCTM: invalid context ...

  5. 利用backtrace和objdump进行分析挂掉的程序

    转自:http://blog.csdn.net/hanchaoman/article/details/5583457 汇编不懂,先把方法记下来. glibc为我们提供了此类能够dump栈内容的函数簇, ...

  6. chromium的Backtrace记录

    ffmpeg处理完视频流后,上层的webrtc调用错误,可以看出webrtc的调用过程: Backtrace: webrtc::RTPFragmentationHeader::CopyFrom [0x ...

  7. SQLSERVER:Timeout expired. The timeout period elapsed prior to obtaining a connection from the pool. This may have occurred because all pooled connections were in use and max pool size was reached.

    背景: 在最近开发中遇到一个问题,对一个数据库进行操作时,我采用64个并行的任务每个任务保证一个数据库连接对象:但是每个任务内部均包含有24个文件需要读取,在读取文件之后,我们需要快速将这24个文件批 ...

  8. 嵌入式 linux下利用backtrace追踪函数调用堆栈以及定位段错误

    嵌入式 linux下利用backtrace追踪函数调用堆栈以及定位段错误 2015-05-27 14:19 184人阅读 评论(0) 收藏 举报  分类: 嵌入式(928)  一般察看函数运行时堆栈的 ...

  9. linux下利用backtrace追踪函数调用堆栈以及定位段错误

    一般察看函数运行时堆栈的方法是使用GDB(bt命令)之类的外部调试器,但是,有些时候为了分析程序的BUG,(主要针对长时间运行程序的分析),在程序出错时打印出函数的调用堆栈是非常有用的. 在glibc ...

随机推荐

  1. 玩转OneNET物联网平台之MQTT服务② —— 远程控制LED

    1.理论基础     参考博主线上博文: 玩转PubSubClient MQTT库 玩转OneNET物联网平台之简介 玩转OneNET物联网平台之MQTT服务① 2.远程控制LED 2.1 实验材料 ...

  2. 微服务架构 ------ Day01 微服务架构优缺点

    1. 微服务架构的优点 庞大的单体程序 -> 一套微型程序. 每一个服务有明确的边界(服务之间的消息通讯机制) ,每一个服务都能单独的开发和维护,并且更好理解 每一个服务都能由一个团队来开发,当 ...

  3. SpringCloud学习--Eureka 服务注册与发现

    目录 一:构建项目 二:服务注册与发现 为什么选择Eureka,请看上一篇博客 Eureka -- 浅谈Eureka 项目构建 IDEA 选择 New Project 选择 Spring Initia ...

  4. 现在Java 桌面应用程序能做到什么程度(Spring Boot+JavaFX2开发)

    Spring Boot - JavaFX 2.0应用 很多人对Java开发native程序第一反应还停留在暗灰色单一风格的Java GUI界面,开发方式还停留在AWT或者Swing.本文主要基于Spr ...

  5. 轻量级CNN模型之squeezenet

    SqueezeNet 论文地址:https://arxiv.org/abs/1602.07360 和别的轻量级模型一样,模型的设计目标就是在保证精度的情况下尽量减少模型参数.核心是论文提出的一种叫&q ...

  6. itextsharp生成pdf

    itextsharp在ios中可用,亲测 (一)生成文档 Document document = , , , ), , , , ); //Document document = new Documen ...

  7. Tkinter 之Entry输入框标签

    一.参数说明 语法 作用 Entry(root,width=20) 组件的宽度(所占字符个数) Entry(root,fg='blue') 前景字体颜色 Entry(root,bg='blue') 背 ...

  8. hystrix原理

    一.hystrix 产生背景 微服务是解决复杂服务的一个方案,在功能不变的情况下,对一个复杂的单体服务分解为多个可管理的分支.每个服务作为轻量的子服务,通过RPC实现服务间的关联,将服务简单化.每个服 ...

  9. net core WebApi——使用xUnits来实现单元测试

    目录 前言 单元测试 xUnit 小结 附录 前言 从开始敲代码到现在,不停地都是在喊着记得做测试,记得自测,测试人员打回来扣你money之类的,刚开始因为心疼钱(当然还是为了代码质量),就老老实实自 ...

  10. 微信小程序的canvas和遮盖布颜色设置问题

    canvas绘画出并显示小程序的逻辑首先是将网络图片转化为本地图片,其次再将进行绘画.将本地图片和二维码显示在画布上,最后将整个画布截图用api显示在屏幕上.真正的画图让他飞去屏幕外. 有时候会需要用 ...