E203 CSR rtl实现分析
CSR状态控制寄存器,每个hart都有自己的CSR。对于每个hart,可以配置的状态寄存器是4k。CSR寄存器的功能见:https://www.cnblogs.com/mikewolf2002/p/11314583.html
CSR实现的rtl代码是e203_exu_csr.v,下面我们分析一下代码实现:
输出输入信号如下:
module e203_exu_csr( input csr_ena, //csr readwrite enable signal from alu,csr读写使能信号,
input csr_wr_en, //csr write enable,csr写使能信号
input csr_rd_en, //csr read enable,csr读使能信号
input [11:0] csr_idx,//csr address index,csr地址索引 output tm_stop, //time stop, counterstop[1],输出time counter是否停止
output core_cgstop,//not is used by isa, 0xbfe, self-defined, core clock gating,核心clock gating设置
output tcm_cgstop,//not is used by isa, 0xbfe, Stop TCM clock gating, tight coupled memory,tcm 访问clock gating
output itcm_nohold, //not is used by isa,itcm是否hold上一次的读数据
output mdv_nob2b, //not is used by isa,是否是两个临接的乘除指令 output [`E203_XLEN-1:0] read_csr_dat,//read return data from csr,从csr读取的数据
input [`E203_XLEN-1:0] wbck_csr_dat,//data write back to csr,写数据到csr input [`E203_HART_ID_W-1:0] core_mhartid, //point mhartid, if read mhartid register, return this value,e203只有一个核,所以为0
//mip register
input ext_irq_r,//external interrupt,是否是外部中断请求
input sft_irq_r,//software interrupt 是否是软件中断请求
input tmr_irq_r,//time interrupt, 是否是计时器中断请求 output status_mie_r,//输出状态寄存器的mie值,表示是否使能全局中断
//interrupt enble value for mie
output mtie_r, //机器模式定时器中断是否屏蔽, mie.mtie位
output msie_r, //机器方式软件中断是否屏蔽,
output meie_r, //机器模式外部中断是否屏蔽, mie.meie位//0x7b0 Debug Control and Status //0x7b1 Debug PC //0x7b2 Debug Scratch Register //0x7a0 Trigger selection register output wr_dcsr_ena , //debug 模式下,写csr 使能
output wr_dpc_ena , //debug模式下,pc写使能
output wr_dscratch_ena, //debug模式下,scratch写使能 input [`E203_XLEN-1:0] dcsr_r , //输入dcsr值
input [`E203_PC_SIZE-1:0] dpc_r , //输入dpc值
input [`E203_XLEN-1:0] dscratch_r, //输入dscratch值 output [`E203_XLEN-1:0] wr_csr_nxt , //=wbck_csr_dat; input dbg_mode, //debug模式
input dbg_stopcycle, //如果在debug模式,且置位这个信号,则停止perf counter计数 output u_mode, //输出当前的模式,如果为那个模式,则这个信号置1
output s_mode,
output h_mode,
output m_mode, input [`E203_ADDR_SIZE-1:0] cmt_badaddr, //输入异常指令或者异常访存地址到mtval/mbadaddr
input cmt_badaddr_ena, //badaddr 使能信号
input [`E203_PC_SIZE-1:0] cmt_epc, //异常返回地址
input cmt_epc_ena, //epc使能信号
input [`E203_XLEN-1:0] cmt_cause, //异常原因输入
input cmt_cause_ena, //cause使能
input cmt_status_ena, //status使能
input cmt_instret_ena, //instret使能 input cmt_mret_ena, //mret使能
output[`E203_PC_SIZE-1:0] csr_epc_r, //输出epc值,异常地址
output[`E203_PC_SIZE-1:0] csr_dpc_r, //输出dpc,debug模式的pc值
output[`E203_XLEN-1:0] csr_mtvec_r, //输出异常模式基地址 input clk_aon, //常开时钟信号,不会受clock gating影响
input clk, //时钟信号
input rst_n //复位信号 );
E203仅支持机器模式,所以priv_mode=2’b11。接着实现mstatus的rtl代码
wire wbck_csr_wen = csr_wr_en & csr_ena ;
wire read_csr_ena = csr_rd_en & csr_ena ; wire [1:0] priv_mode = u_mode ? 2'b00 :
s_mode ? 2'b01 :
h_mode ? 2'b10 :
m_mode ? 2'b11 :
2'b11; //0x000 URW ustatus User status register.
// * Since we support the user-level interrupt, hence we need to support UIE
//0x300 MRW mstatus Machine status register.
wire sel_ustatus = (csr_idx == 12'h000);
wire sel_mstatus = (csr_idx == 12'h300); wire rd_ustatus = sel_ustatus & csr_rd_en;
wire rd_mstatus = sel_mstatus & csr_rd_en;
wire wr_ustatus = sel_ustatus & csr_wr_en;
wire wr_mstatus = sel_mstatus & csr_wr_en; /////////////////////////////////////////////////////////////////////
// Note: the below implementation only apply to Machine-mode config,
// if other mode is also supported, these logics need to be updated //////////////////////////
// Implement MPIE field
//
wire status_mpie_r;
// The MPIE Feilds will be updates when: //在中断发生或者中断完成,返回时候,或者直接写该寄存器时候,使能该寄存器
wire status_mpie_ena =
// The CSR is written by CSR instructions
(wr_mstatus & wbck_csr_wen) |
// The MRET instruction commited
cmt_mret_ena |
// The Trap is taken
cmt_status_ena; wire status_mpie_nxt =
// See Priv SPEC:
// When a trap is taken from privilege mode y into privilege
// mode x, xPIE is set to the value of xIE;
// So, When the Trap is taken, the MPIE is updated with the current MIE value
cmt_status_ena ? status_mie_r : //进入中断的时候,保存mie的值。
// See Priv SPEC:
// When executing an xRET instruction, supposing xPP holds the value y, xIE
// is set to xPIE; the privilege mode is changed to y;
// xPIE is set to 1;
// So, When the MRET instruction commited, the MPIE is updated with 1
cmt_mret_ena ? 1'b1 : //从中断返回时候更新为0
// When the CSR is written by CSR instructions
(wr_mstatus & wbck_csr_wen) ? wbck_csr_dat[7] : // MPIE is in field 7 of mstatus
status_mpie_r; // Unchanged sirv_gnrl_dfflr #(1) status_mpie_dfflr (status_mpie_ena, status_mpie_nxt, status_mpie_r, clk, rst_n); //////////////////////////
// Implement MIE field
//
// The MIE Feilds will be updates same as MPIE
wire status_mie_ena = status_mpie_ena;
wire status_mie_nxt =
// See Priv SPEC:
// When a trap is taken from privilege mode y into privilege
// mode x, xPIE is set to the value of xIE,
// xIE is set to 0;
// So, When the Trap is taken, the MIE is updated with 0
cmt_status_ena ? 1'b0 : //进入中断时候,关闭中断
// See Priv SPEC:
// When executing an xRET instruction, supposing xPP holds the value y, xIE
// is set to xPIE; the privilege mode is changed to y, xPIE is set to 1;
// So, When the MRET instruction commited, the MIE is updated with MPIE
cmt_mret_ena ? status_mpie_r : //从中断返回时候,恢复保存在mpie中的值。
// When the CSR is written by CSR instructions
(wr_mstatus & wbck_csr_wen) ? wbck_csr_dat[3] : // MIE is in field 3 of mstatus
status_mie_r; // Unchanged sirv_gnrl_dfflr #(1) status_mie_dfflr (status_mie_ena, status_mie_nxt, status_mie_r, clk, rst_n); //////////////////////////
// Implement SD field
//
// See Priv SPEC:
// The SD bit is read-only
// And is set when either the FS or XS bits encode a Dirty
// state (i.e., SD=((FS==11) OR (XS==11))).//因为没有浮点单元和协处理器,fs,xs域都为0
wire [1:0] status_fs_r;
wire [1:0] status_xs_r;
wire status_sd_r = (status_fs_r == 2'b11) | (status_xs_r == 2'b11); //////////////////////////
// Implement XS field
//
// See Priv SPEC:
// XS field is read-only
// The XS field represents a summary of all extensions' status
// But in E200 we implement XS exactly same as FS to make it usable by software to
// disable extended accelerators
// If no EAI coprocessor interface configured, the XS is just hardwired to 0
assign status_xs_r = 2'b0; //////////////////////////
// Implement FS field
// `ifndef E203_HAS_FPU
// If no FPU configured, the FS is just hardwired to 0
assign status_fs_r = 2'b0;
`endif //////////////////////////
// Pack to the full mstatus register
//
wire [`E203_XLEN-1:0] status_r;
assign status_r[31] = status_sd_r; //SD
assign status_r[30:23] = 8'b0; // Reserved
assign status_r[22:17] = 6'b0; // TSR--MPRV
assign status_r[16:15] = status_xs_r; // XS
assign status_r[14:13] = status_fs_r; // FS
assign status_r[12:11] = 2'b11; // MPP
assign status_r[10:9] = 2'b0; // Reserved
assign status_r[8] = 1'b0; // SPP
assign status_r[7] = status_mpie_r; // MPIE
assign status_r[6] = 1'b0; // Reserved
assign status_r[5] = 1'b0; // SPIE
assign status_r[4] = 1'b0; // UPIE
assign status_r[3] = status_mie_r; // MIE
assign status_r[2] = 1'b0; // Reserved
assign status_r[1] = 1'b0; // SIE
assign status_r[0] = 1'b0; // UIE wire [`E203_XLEN-1:0] csr_mstatus = status_r;
mie/mip rtl实现
//0x004 URW uie User interrupt-enable register.
// * Since we dont delegate interrupt to user mode, hence it is as all 0s
//0x304 MRW mie Machine interrupt-enable register.
wire sel_mie = (csr_idx == 12'h304);
wire rd_mie = sel_mie & csr_rd_en;
wire wr_mie = sel_mie & csr_wr_en;
wire mie_ena = wr_mie & wbck_csr_wen;
wire [`E203_XLEN-1:0] mie_r;
wire [`E203_XLEN-1:0] mie_nxt;
assign mie_nxt[31:12] = 20'b0;
assign mie_nxt[11] = wbck_csr_dat[11];//MEIE
assign mie_nxt[10:8] = 3'b0;
assign mie_nxt[ 7] = wbck_csr_dat[ 7];//MTIE
assign mie_nxt[6:4] = 3'b0;
assign mie_nxt[ 3] = wbck_csr_dat[ 3];//MSIE
assign mie_nxt[2:0] = 3'b0;
sirv_gnrl_dfflr #(`E203_XLEN) mie_dfflr (mie_ena, mie_nxt, mie_r, clk, rst_n);
wire [`E203_XLEN-1:0] csr_mie = mie_r; assign meie_r = csr_mie[11];
assign mtie_r = csr_mie[ 7];
assign msie_r = csr_mie[ 3]; //0x044 URW uip User interrupt pending.
// We dont support delegation scheme, so no need to support the uip
//0x344 MRW mip Machine interrupt pending
wire sel_mip = (csr_idx == 12'h344);
wire rd_mip = sel_mip & csr_rd_en;
//wire wr_mip = sel_mip & csr_wr_en;
// The MxIP is read-only
wire meip_r;
wire msip_r;
wire mtip_r;
sirv_gnrl_dffr #(1) meip_dffr (ext_irq_r, meip_r, clk, rst_n);
sirv_gnrl_dffr #(1) msip_dffr (sft_irq_r, msip_r, clk, rst_n);
sirv_gnrl_dffr #(1) mtip_dffr (tmr_irq_r, mtip_r, clk, rst_n); wire [`E203_XLEN-1:0] ip_r;
assign ip_r[31:12] = 20'b0;
assign ip_r[11] = meip_r;
assign ip_r[10:8] = 3'b0;
assign ip_r[ 7] = mtip_r;
assign ip_r[6:4] = 3'b0;
assign ip_r[ 3] = msip_r;
assign ip_r[2:0] = 3'b0;
wire [`E203_XLEN-1:0] csr_mip = ip_r;
mtvec和mscratch rtl实现
//0x005 URW utvec User trap handler base address.
// We dont support user trap, so no utvec needed
//0x305 MRW mtvec Machine trap-handler base address.
wire sel_mtvec = (csr_idx == 12'h305);
wire rd_mtvec = csr_rd_en & sel_mtvec;
`ifdef E203_SUPPORT_MTVEC //{
wire wr_mtvec = sel_mtvec & csr_wr_en;
wire mtvec_ena = (wr_mtvec & wbck_csr_wen);
wire [`E203_XLEN-1:0] mtvec_r;
wire [`E203_XLEN-1:0] mtvec_nxt = wbck_csr_dat;
sirv_gnrl_dfflr #(`E203_XLEN) mtvec_dfflr (mtvec_ena, mtvec_nxt, mtvec_r, clk, rst_n);
wire [`E203_XLEN-1:0] csr_mtvec = mtvec_r;
`else//}{
// THe vector table base is a configurable parameter, so we dont support writeable to it
wire [`E203_XLEN-1:0] csr_mtvec = `E203_MTVEC_TRAP_BASE;
`endif//}
assign csr_mtvec_r = csr_mtvec; //0x340 MRW mscratch
wire sel_mscratch = (csr_idx == 12'h340);
wire rd_mscratch = sel_mscratch & csr_rd_en;
`ifdef E203_SUPPORT_MSCRATCH //{
wire wr_mscratch = sel_mscratch & csr_wr_en;
wire mscratch_ena = (wr_mscratch & wbck_csr_wen);
wire [`E203_XLEN-1:0] mscratch_r;
wire [`E203_XLEN-1:0] mscratch_nxt = wbck_csr_dat;
sirv_gnrl_dfflr #(`E203_XLEN) mscratch_dfflr (mscratch_ena, mscratch_nxt, mscratch_r, clk, rst_n);
wire [`E203_XLEN-1:0] csr_mscratch = mscratch_r;
`else//}{
wire [`E203_XLEN-1:0] csr_mscratch = `E203_XLEN'b0;
`endif//}
mcycle/mcycleh/minstret/minstreth/counterstop/cgstop/itcmnohold/mdvnob2b等的rtl实现。
// 0xB00 MRW mcycle
// 0xB02 MRW minstret
// 0xB80 MRW mcycleh
// 0xB82 MRW minstreth
wire sel_mcycle = (csr_idx == 12'hB00);
wire sel_mcycleh = (csr_idx == 12'hB80);
wire sel_minstret = (csr_idx == 12'hB02);
wire sel_minstreth = (csr_idx == 12'hB82); // 0xBFF MRW counterstop
// This register is our self-defined register to stop
// the cycle/time/instret counters to save dynamic powers
wire sel_counterstop = (csr_idx == 12'hBFF);// This address is not used by ISA
// 0xBFE MRW mcgstop
// This register is our self-defined register to disable the
// automaticall clock gating for CPU logics for debugging purpose
wire sel_mcgstop = (csr_idx == 12'hBFE);// This address is not used by ISA
// 0xBFD MRW itcmnohold
// This register is our self-defined register to disble the
// ITCM SRAM output holdup feature, if set, then we assume
// ITCM SRAM output cannot holdup last read value
wire sel_itcmnohold = (csr_idx == 12'hBFD);// This address is not used by ISA
// 0xBF0 MRW mdvnob2b
// This register is our self-defined register to disble the
// Mul/div back2back feature
wire sel_mdvnob2b = (csr_idx == 12'hBF0);// This address is not used by ISA wire rd_mcycle = csr_rd_en & sel_mcycle ;
wire rd_mcycleh = csr_rd_en & sel_mcycleh ;
wire rd_minstret = csr_rd_en & sel_minstret ;
wire rd_minstreth = csr_rd_en & sel_minstreth; wire rd_itcmnohold = csr_rd_en & sel_itcmnohold;
wire rd_mdvnob2b = csr_rd_en & sel_mdvnob2b;
wire rd_counterstop = csr_rd_en & sel_counterstop;
wire rd_mcgstop = csr_rd_en & sel_mcgstop; `ifdef E203_SUPPORT_MCYCLE_MINSTRET //{
wire wr_mcycle = csr_wr_en & sel_mcycle ;
wire wr_mcycleh = csr_wr_en & sel_mcycleh ;
wire wr_minstret = csr_wr_en & sel_minstret ;
wire wr_minstreth = csr_wr_en & sel_minstreth; wire wr_itcmnohold = csr_wr_en & sel_itcmnohold ;
wire wr_mdvnob2b = csr_wr_en & sel_mdvnob2b ;
wire wr_counterstop = csr_wr_en & sel_counterstop;
wire wr_mcgstop = csr_wr_en & sel_mcgstop ; wire mcycle_wr_ena = (wr_mcycle & wbck_csr_wen);
wire mcycleh_wr_ena = (wr_mcycleh & wbck_csr_wen);
wire minstret_wr_ena = (wr_minstret & wbck_csr_wen);
wire minstreth_wr_ena = (wr_minstreth & wbck_csr_wen); wire itcmnohold_wr_ena = (wr_itcmnohold & wbck_csr_wen);
wire mdvnob2b_wr_ena = (wr_mdvnob2b & wbck_csr_wen);
wire counterstop_wr_ena = (wr_counterstop & wbck_csr_wen);
wire mcgstop_wr_ena = (wr_mcgstop & wbck_csr_wen); wire [`E203_XLEN-1:0] mcycle_r ;
wire [`E203_XLEN-1:0] mcycleh_r ;
wire [`E203_XLEN-1:0] minstret_r ;
wire [`E203_XLEN-1:0] minstreth_r; wire cy_stop;
wire ir_stop; wire stop_cycle_in_dbg = dbg_stopcycle & dbg_mode;
wire mcycle_ena = mcycle_wr_ena |
((~cy_stop) & (~stop_cycle_in_dbg) & (1'b1));
wire mcycleh_ena = mcycleh_wr_ena |
((~cy_stop) & (~stop_cycle_in_dbg) & ((mcycle_r == (~(`E203_XLEN'b0)))));
wire minstret_ena = minstret_wr_ena |
((~ir_stop) & (~stop_cycle_in_dbg) & (cmt_instret_ena));
wire minstreth_ena = minstreth_wr_ena |
((~ir_stop) & (~stop_cycle_in_dbg) & ((cmt_instret_ena & (minstret_r == (~(`E203_XLEN'b0))))));
//auto increment
wire [`E203_XLEN-1:0] mcycle_nxt = mcycle_wr_ena ? wbck_csr_dat : (mcycle_r + 1'b1);
wire [`E203_XLEN-1:0] mcycleh_nxt = mcycleh_wr_ena ? wbck_csr_dat : (mcycleh_r + 1'b1);
wire [`E203_XLEN-1:0] minstret_nxt = minstret_wr_ena ? wbck_csr_dat : (minstret_r + 1'b1);
wire [`E203_XLEN-1:0] minstreth_nxt = minstreth_wr_ena ? wbck_csr_dat : (minstreth_r + 1'b1); //We need to use the always-on clock for this counter
sirv_gnrl_dfflr #(`E203_XLEN) mcycle_dfflr (mcycle_ena, mcycle_nxt, mcycle_r , clk_aon, rst_n);
sirv_gnrl_dfflr #(`E203_XLEN) mcycleh_dfflr (mcycleh_ena, mcycleh_nxt, mcycleh_r , clk_aon, rst_n);
sirv_gnrl_dfflr #(`E203_XLEN) minstret_dfflr (minstret_ena, minstret_nxt, minstret_r , clk, rst_n);
sirv_gnrl_dfflr #(`E203_XLEN) minstreth_dfflr (minstreth_ena, minstreth_nxt, minstreth_r, clk, rst_n); wire [`E203_XLEN-1:0] counterstop_r;
wire counterstop_ena = counterstop_wr_ena;
wire [`E203_XLEN-1:0] counterstop_nxt = {29'b0,wbck_csr_dat[2:0]};// Only LSB 3bits are useful
sirv_gnrl_dfflr #(`E203_XLEN) counterstop_dfflr (counterstop_ena, counterstop_nxt, counterstop_r, clk, rst_n); wire [`E203_XLEN-1:0] csr_mcycle = mcycle_r;
wire [`E203_XLEN-1:0] csr_mcycleh = mcycleh_r;
wire [`E203_XLEN-1:0] csr_minstret = minstret_r;
wire [`E203_XLEN-1:0] csr_minstreth = minstreth_r;
wire [`E203_XLEN-1:0] csr_counterstop = counterstop_r;
`else//}{
wire [`E203_XLEN-1:0] csr_mcycle = `E203_XLEN'b0;
wire [`E203_XLEN-1:0] csr_mcycleh = `E203_XLEN'b0;
wire [`E203_XLEN-1:0] csr_minstret = `E203_XLEN'b0;
wire [`E203_XLEN-1:0] csr_minstreth = `E203_XLEN'b0;
wire [`E203_XLEN-1:0] csr_counterstop = `E203_XLEN'b0;
`endif//} wire [`E203_XLEN-1:0] itcmnohold_r;
wire itcmnohold_ena = itcmnohold_wr_ena;
wire [`E203_XLEN-1:0] itcmnohold_nxt = {31'b0,wbck_csr_dat[0]};// Only LSB 1bits are useful
sirv_gnrl_dfflr #(`E203_XLEN) itcmnohold_dfflr (itcmnohold_ena, itcmnohold_nxt, itcmnohold_r, clk, rst_n); wire [`E203_XLEN-1:0] csr_itcmnohold = itcmnohold_r; wire [`E203_XLEN-1:0] mdvnob2b_r;
wire mdvnob2b_ena = mdvnob2b_wr_ena;
wire [`E203_XLEN-1:0] mdvnob2b_nxt = {31'b0,wbck_csr_dat[0]};// Only LSB 1bits are useful
sirv_gnrl_dfflr #(`E203_XLEN) mdvnob2b_dfflr (mdvnob2b_ena, mdvnob2b_nxt, mdvnob2b_r, clk, rst_n); wire [`E203_XLEN-1:0] csr_mdvnob2b = mdvnob2b_r; assign cy_stop = counterstop_r[0];// Stop CYCLE counter
assign tm_stop = counterstop_r[1];// Stop TIME counter
assign ir_stop = counterstop_r[2];// Stop INSTRET counter,instruction number counter assign itcm_nohold = itcmnohold_r[0];// ITCM no-hold up feature
assign mdv_nob2b = mdvnob2b_r[0];// Mul/Div no back2back feature wire [`E203_XLEN-1:0] mcgstop_r;
wire mcgstop_ena = mcgstop_wr_ena;
wire [`E203_XLEN-1:0] mcgstop_nxt = {30'b0,wbck_csr_dat[1:0]};// Only LSB 2bits are useful
sirv_gnrl_dfflr #(`E203_XLEN) mcgstop_dfflr (mcgstop_ena, mcgstop_nxt, mcgstop_r, clk, rst_n);
wire [`E203_XLEN-1:0] csr_mcgstop = mcgstop_r;
assign core_cgstop = mcgstop_r[0];// Stop Core clock gating
assign tcm_cgstop = mcgstop_r[1];// Stop TCM clock gating
mepc/mcause/mbadaddr/misa等的rtl实现。
//0x041 URW uepc User exception program counter.
// We dont support user trap, so no uepc needed
//0x341 MRW mepc Machine exception program counter.
wire sel_mepc = (csr_idx == 12'h341);
wire rd_mepc = sel_mepc & csr_rd_en;
wire wr_mepc = sel_mepc & csr_wr_en;
wire epc_ena = (wr_mepc & wbck_csr_wen) | cmt_epc_ena;
wire [`E203_PC_SIZE-1:0] epc_r;
wire [`E203_PC_SIZE-1:0] epc_nxt;
assign epc_nxt[`E203_PC_SIZE-1:1] = cmt_epc_ena ? cmt_epc[`E203_PC_SIZE-1:1] : wbck_csr_dat[`E203_PC_SIZE-1:1];
assign epc_nxt[0] = 1'b0;// Must not hold PC which will generate the misalign exception according to ISA
sirv_gnrl_dfflr #(`E203_PC_SIZE) epc_dfflr (epc_ena, epc_nxt, epc_r, clk, rst_n);
wire [`E203_XLEN-1:0] csr_mepc;
wire dummy_0;
assign {dummy_0,csr_mepc} = {{`E203_XLEN+1-`E203_PC_SIZE{1'b0}},epc_r};
assign csr_epc_r = csr_mepc; //0x042 URW ucause User trap cause.
// We dont support user trap, so no ucause needed
//0x342 MRW mcause Machine trap cause.
wire sel_mcause = (csr_idx == 12'h342);
wire rd_mcause = sel_mcause & csr_rd_en;
wire wr_mcause = sel_mcause & csr_wr_en;
wire cause_ena = (wr_mcause & wbck_csr_wen) | cmt_cause_ena;
wire [`E203_XLEN-1:0] cause_r;
wire [`E203_XLEN-1:0] cause_nxt;
assign cause_nxt[31] = cmt_cause_ena ? cmt_cause[31] : wbck_csr_dat[31];
assign cause_nxt[30:4] = 27'b0;
assign cause_nxt[3:0] = cmt_cause_ena ? cmt_cause[3:0] : wbck_csr_dat[3:0];
sirv_gnrl_dfflr #(`E203_XLEN) cause_dfflr (cause_ena, cause_nxt, cause_r, clk, rst_n);
wire [`E203_XLEN-1:0] csr_mcause = cause_r; //0x043 URW ubadaddr User bad address.
// We dont support user trap, so no ubadaddr needed
//0x343 MRW mbadaddr Machine bad address.
wire sel_mbadaddr = (csr_idx == 12'h343);
wire rd_mbadaddr = sel_mbadaddr & csr_rd_en;
wire wr_mbadaddr = sel_mbadaddr & csr_wr_en;
wire cmt_trap_badaddr_ena = cmt_badaddr_ena;
wire badaddr_ena = (wr_mbadaddr & wbck_csr_wen) | cmt_trap_badaddr_ena;
wire [`E203_ADDR_SIZE-1:0] badaddr_r;
wire [`E203_ADDR_SIZE-1:0] badaddr_nxt;
assign badaddr_nxt = cmt_trap_badaddr_ena ? cmt_badaddr : wbck_csr_dat[`E203_ADDR_SIZE-1:0];
sirv_gnrl_dfflr #(`E203_ADDR_SIZE) badaddr_dfflr (badaddr_ena, badaddr_nxt, badaddr_r, clk, rst_n);
wire [`E203_XLEN-1:0] csr_mbadaddr;
wire dummy_1;
assign {dummy_1,csr_mbadaddr} = {{`E203_XLEN+1-`E203_ADDR_SIZE{1'b0}},badaddr_r}; // We dont support the delegation scheme, so no need to implement
// delegete registers //0x301 MRW misa ISA and extensions
wire sel_misa = (csr_idx == 12'h301);
wire rd_misa = sel_misa & csr_rd_en;
// Only implemented the M mode, IMC or EMC
wire [`E203_XLEN-1:0] csr_misa = {
2'b1
,4'b0 //WIRI
,1'b0 // 25 Z Reserved
,1'b0 // 24 Y Reserved
,1'b0 // 23 X Non-standard extensions present
,1'b0 // 22 W Reserved
,1'b0 // 21 V Tentatively reserved for Vector extension 20 U User mode implemented
,1'b0 // 20 U User mode implemented
,1'b0 // 19 T Tentatively reserved for Transactional Memory extension
,1'b0 // 18 S Supervisor mode implemented
,1'b0 // 17 R Reserved
,1'b0 // 16 Q Quad-precision floating-point extension
,1'b0 // 15 P Tentatively reserved for Packed-SIMD extension
,1'b0 // 14 O Reserved
,1'b0 // 13 N User-level interrupts supported
,1'b1 // 12 M Integer Multiply/Divide extension
,1'b0 // 11 L Tentatively reserved for Decimal Floating-Point extension
,1'b0 // 10 K Reserved
,1'b0 // 9 J Reserved
`ifdef E203_RFREG_NUM_IS_32
,1'b1 // 8 I RV32I/64I/128I base ISA
`else
,1'b0
`endif
,1'b0 // 7 H Hypervisor mode implemented
,1'b0 // 6 G Additional standard extensions present
`ifndef E203_HAS_FPU//{
,1'b0 // 5 F Single-precision floating-point extension
`endif//
`ifdef E203_RFREG_NUM_IS_32
,1'b0 // 4 E RV32E base ISA
`else
,1'b1 //
`endif
`ifndef E203_HAS_FPU//{
,1'b0 // 3 D Double-precision floating-point extension
`endif//
,1'b1 // 2 C Compressed extension
,1'b0 // 1 B Tentatively reserved for Bit operations extension
`ifdef E203_SUPPORT_AMO//{
,1'b1 // 0 A Atomic extension
`endif//E203_SUPPORT_AMO}
`ifndef E203_SUPPORT_AMO//{
,1'b0 // 0 A Atomic extension
`endif//}
}; //Machine Information Registers
//0xF11 MRO mvendorid Vendor ID.
//0xF12 MRO marchid Architecture ID.
//0xF13 MRO mimpid Implementation ID.
//0xF14 MRO mhartid Hardware thread ID.
wire [`E203_XLEN-1:0] csr_mvendorid = `E203_XLEN'h`E203_MVENDORID;
wire [`E203_XLEN-1:0] csr_marchid = `E203_XLEN'h`E203_MARCHID ;
wire [`E203_XLEN-1:0] csr_mimpid = `E203_XLEN'h`E203_MIMPID ;
wire [`E203_XLEN-1:0] csr_mhartid = {{`E203_XLEN-`E203_HART_ID_W{1'b0}},core_mhartid};
wire rd_mvendorid = csr_rd_en & (csr_idx == 12'hF11);
wire rd_marchid = csr_rd_en & (csr_idx == 12'hF12);
wire rd_mimpid = csr_rd_en & (csr_idx == 12'hF13);
wire rd_mhartid = csr_rd_en & (csr_idx == 12'hF14); //0x7b0 Debug Control and Status
//0x7b1 Debug PC
//0x7b2 Debug Scratch Register
//0x7a0 Trigger selection register
wire sel_dcsr = (csr_idx == 12'h7b0);
wire sel_dpc = (csr_idx == 12'h7b1);
wire sel_dscratch = (csr_idx == 12'h7b2); wire rd_dcsr = dbg_mode & csr_rd_en & sel_dcsr ;
wire rd_dpc = dbg_mode & csr_rd_en & sel_dpc ;
wire rd_dscratch = dbg_mode & csr_rd_en & sel_dscratch; assign wr_dcsr_ena = dbg_mode & csr_wr_en & sel_dcsr ;
assign wr_dpc_ena = dbg_mode & csr_wr_en & sel_dpc ;
assign wr_dscratch_ena = dbg_mode & csr_wr_en & sel_dscratch; assign wr_csr_nxt = wbck_csr_dat; wire [`E203_XLEN-1:0] csr_dcsr = dcsr_r ;
`ifdef E203_PC_SIZE_IS_16
wire [`E203_XLEN-1:0] csr_dpc = {{`E203_XLEN-`E203_PC_SIZE{1'b0}},dpc_r};
`endif
`ifdef E203_PC_SIZE_IS_24
wire [`E203_XLEN-1:0] csr_dpc = {{`E203_XLEN-`E203_PC_SIZE{1'b0}},dpc_r};
`endif
`ifdef E203_PC_SIZE_IS_32
wire [`E203_XLEN-1:0] csr_dpc = dpc_r ;
`endif
wire [`E203_XLEN-1:0] csr_dscratch = dscratch_r; assign csr_dpc_r = dpc_r;
下面是我的写的一个testbench,
`include "e203_defines.v"
module e203_exu_csr_tb; reg csr_ena; //csr readwrite enable signal from alu
reg csr_wr_en; //csr write enable
reg csr_rd_en; //csr read enable
reg [11:0] csr_idx;//csr address index wire tm_stop;
wire core_cgstop;
wire tcm_cgstop;
wire itcm_nohold;
wire mdv_nob2b; wire [`E203_XLEN-1:0] read_csr_dat;
reg [`E203_XLEN-1:0] wbck_csr_dat; reg [`E203_HART_ID_W-1:0] core_mhartid;
reg ext_irq_r;
reg sft_irq_r;
reg tmr_irq_r; wire status_mie_r;
wire mtie_r;
wire msie_r;
wire meie_r; wire wr_dcsr_ena ;
wire wr_dpc_ena ;
wire wr_dscratch_ena; reg [`E203_XLEN-1:0] dcsr_r ;
reg [`E203_PC_SIZE-1:0] dpc_r ;
reg [`E203_XLEN-1:0] dscratch_r; wire [`E203_XLEN-1:0] wr_csr_nxt ; reg dbg_mode;
reg dbg_stopcycle; wire u_mode;
wire s_mode;
wire h_mode;
wire m_mode; reg [`E203_ADDR_SIZE-1:0] cmt_badaddr;
reg cmt_badaddr_ena;
reg [`E203_PC_SIZE-1:0] cmt_epc;
reg cmt_epc_ena;
reg [`E203_XLEN-1:0] cmt_cause;
reg cmt_cause_ena;
reg cmt_status_ena;
reg cmt_instret_ena; reg cmt_mret_ena;
wire[`E203_PC_SIZE-1:0] csr_epc_r;
wire[`E203_PC_SIZE-1:0] csr_dpc_r;
wire[`E203_XLEN-1:0] csr_mtvec_r; reg clk=0;
reg rst_n; e203_exu_csr mycsr(
.csr_ena(csr_ena),
.csr_wr_en(csr_wr_en),
.csr_rd_en(csr_rd_en),
.csr_idx(csr_idx),
.tm_stop(tm_stop),
.core_cgstop(core_cgstop),
.tcm_cgstop(tcm_cgstop),
.itcm_nohold(itcm_nohold),
.mdv_nob2b(mdv_nob2b),
.read_csr_dat(read_csr_dat),
.wbck_csr_dat(wbck_csr_dat),
.core_mhartid(core_mhartid),
.ext_irq_r(ext_irq_r),
.sft_irq_r(sft_irq_r),
.tmr_irq_r(tmr_irq_r),
.status_mie_r(status_mie_r),
.mtie_r(mtie_r),
.msie_r(msie_r),
.meie_r(meie_r),
.wr_dcsr_ena(wr_dcsr_ena),
.wr_dpc_ena(wr_dpc_ena),
.wr_dscratch_ena(wr_dscratch_ena),
.dcsr_r(dcsr_r),
.dpc_r(dpc_r),
.dscratch_r(dscratch_r),
.wr_csr_nxt(wr_csr_nxt),
.dbg_mode(dbg_mode),
.dbg_stopcycle(dbg_stopcycle),
.u_mode(u_mode),
.s_mode(s_mode),
.h_mode(h_mode),
.m_mode(m_mode),
.cmt_badaddr(cmt_badaddr),
.cmt_badaddr_ena(cmt_badaddr_ena),
.cmt_epc(cmt_epc),
.cmt_epc_ena(cmt_epc_ena),
.cmt_cause(cmt_cause),
.cmt_cause_ena(cmt_cause_ena),
.cmt_status_ena(cmt_status_ena),
.cmt_instret_ena(cmt_instret_ena),
.cmt_mret_ena(cmt_mret_ena),
.csr_epc_r(csr_epc_r),
.csr_dpc_r(csr_dpc_r),
.csr_mtvec_r(csr_mtvec_r),
.clk_aon(clk),
.clk(clk),
.rst_n(rst_n)
); always #10 clk=~clk; initial
begin
rst_n = 1'b1;
#20
rst_n= 1'b0;
#20
rst_n=1'b1;
csr_ena = 1'b1;
csr_wr_en = 1'b1;
csr_rd_en = 1'b0;
csr_idx = 11'h300; //mstatus
wbck_csr_dat = 32'h0001f888;
core_mhartid = `E203_HART_ID_W'h0;
ext_irq_r = 1'b0;
sft_irq_r = 1'b0;
tmr_irq_r = 1'b0;
dcsr_r = `E203_XLEN'h5;
dpc_r = `E203_PC_SIZE'h5;
dscratch_r = `E203_XLEN'h5;
dbg_mode = 1'b0;
dbg_stopcycle= 1'b0;
cmt_badaddr=`E203_ADDR_SIZE'h4;
cmt_badaddr_ena = 1'b0;
cmt_epc=`E203_PC_SIZE'h4;
cmt_epc_ena = 1'b0;
cmt_cause=`E203_XLEN'h4;
cmt_cause_ena = 1'b0;
cmt_status_ena = 1'b0;
cmt_instret_ena = 1'b0;
cmt_mret_ena = 1'b0; #20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
#20 csr_wr_en = 1'b1;
csr_rd_en = 1'b0;
wbck_csr_dat = 32'h80;
#20
csr_wr_en = 1'b1;
csr_rd_en = 1'b0;
wbck_csr_dat = 32'h888;
csr_idx = 12'h304; //mie
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
#20
csr_wr_en = 1'b1;
csr_rd_en = 1'b0;
wbck_csr_dat = 32'h800;
csr_idx = 12'h344; //mip
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
#20
csr_wr_en = 1'b1;
csr_rd_en = 1'b0;
wbck_csr_dat = 32'hff;
csr_idx = 12'h305; //mtvec
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
#20
csr_wr_en = 1'b1;
csr_rd_en = 1'b0;
wbck_csr_dat = 32'hff00;
csr_idx = 12'h340; //mscratch
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
#20
csr_wr_en = 1'b1;
csr_rd_en = 1'b0;
wbck_csr_dat = 32'h7;
csr_idx = 12'hbff; //counterstop
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
#20
csr_wr_en = 1'b1;
csr_rd_en = 1'b0;
wbck_csr_dat = 32'h3;
csr_idx = 12'hbfe; //mcgstop
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
#20
csr_wr_en = 1'b1;
csr_rd_en = 1'b0;
wbck_csr_dat = 32'h1;
csr_idx = 12'hbfd; //itcmnohold
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
#20
csr_wr_en = 1'b1;
csr_rd_en = 1'b0;
wbck_csr_dat = 32'h1;
csr_idx = 12'hbf0; //mdvnob2b
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
#20
csr_wr_en = 1'b1;
csr_rd_en = 1'b0;
wbck_csr_dat = 32'h1;
csr_idx = 12'h341; //mepc
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
#20
csr_wr_en = 1'b1;
csr_rd_en = 1'b0;
wbck_csr_dat = 32'haa;
csr_idx = 12'h342; //mcasue
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
#20
csr_wr_en = 1'b1;
csr_rd_en = 1'b0;
wbck_csr_dat = 32'hffff;
csr_idx = 12'h343; //mbadaddr/mtval
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
csr_idx = 12'h301; //misa
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
csr_idx = 12'hf11; //mvendorid
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
csr_idx = 12'hf12; //marchid
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
csr_idx = 12'hf13; //mimpid
#20
csr_wr_en = 1'b0;
csr_rd_en = 1'b1;
csr_idx = 12'hf14; //mhartid
#100 $finish;
end //initial
// $monitor($time,,,"clk=%b,i_instr=0x%h,i_pc=%h",clk,i_instr,i_pc);
initial
begin
//$dumpfile("dump.vcd");
//$dumpvars;
$fsdbDumpfile("dump.fsdb");
$fsdbDumpvars("+all");
end endmodule
Makefile
# VCS flags, if want to use dump fsdb in verilog file, need to add args -fsdb, otherwise will be compiled fail
VCS_FLAGS = -sverilog -full64 -fsdb -debug_all +v2k -timescale=1ns/1ns +define+DISABLE_SV_ASSERTION # Source files
SRC_FILES = e203_exu_csr.v \
sirv_gnrl_dffs.v \
sirv_gnrl_xchecker.v \
e203_exu_csr_tb.v \ # Source directories
INCDIR = +incdir+./ all:
vcs $(VCS_FLAGS) $(INCDIR) $(SRC_FILES)
clean:
rm -rf ./csrc *.daidir ./csrc *.log *.vpd *.vdb simv* *.key *race.out* *vcd *fsdb
debug:
verdi -sv -ssf dump.fsdb -f verdi.f &
E203 CSR rtl实现分析的更多相关文章
- E203 CSR寄存器
RiscV架构则定义了一些控制和状态寄存器(CSR),用于配置或记录一些运行的状态.CSR寄存器是处理器内核内部的寄存器,使用专有的12位地址编码空间,对一个hart,可以配置4k的CSR寄存器. 蜂 ...
- OpenRisc-41-or1200的cache模块分析
引言 为CPU提供足够的,稳定的指令流和数据流是计算机体系结构设计中两个永恒的话题.为了给CPU提供指令流,需要设计分支预测机构,为了给CPU提供数据流,就需要设计cache了.其实,无论是insn还 ...
- 使用Verdi理解RTL design
使用Verdi理解RTL design 接触到一些RTL代码,在阅读与深入理解的过程中的一些思考记录 协议与设计框图 认真反复阅读理解相关协议与设计框图,一个design的设计文档中,设计框图展示了这 ...
- 带你了解强大的Cadence家族,你可能只用到了它1/10的工具
[转载自 SI-list[中国]http://mp.weixin.qq.com/s/qsdfzQwIVjvwHXuCdvrPXA ] 本篇对2017年初版Cadence的全套所有EDA工具的技术特性特 ...
- orpsocv2 从ROM(bootrom)启动分析--以atlys板子的启动为例子
1 复位后的启动地址 1) 复位后,启动地址在or1200_defines.v最后宏定义,atlys板子的目录:orpsocv2\boards\xilinx\atlys\rtl\verilog\inc ...
- 性能分析工具-PerfView
Roslyn的PM(程序经理) Bill Chiles,Roslyn使用纯托管代码开发,但性能超过之前使用C++编写的原生实现,这有什么秘诀呢?他最近写了一篇文章叫做<Essential Per ...
- bidi(双向文字)与RTL布局总结
BIDI 双向文字就是一个字符串中包含了两种文字,既包含从左到右的文字又包含从右到左的文字. 大多数文字都是从左到右的书写习惯,比如拉丁文字(英文字母)和汉字,少数文字是从右到左的书写方式比如阿拉伯文 ...
- [转载] TLS协议分析 与 现代加密通信协议设计
https://blog.helong.info/blog/2015/09/06/tls-protocol-analysis-and-crypto-protocol-design/?from=time ...
- Form_通过Trace分析Concurrent和Form性能和异常详解(案例)
2014-06-21 Created By BaoXinjian
随机推荐
- AQS(AbstractQueuedSynchronizer)解析
AbstractQueuedSynchronizer是JUC包下的一个重要的类,JUC下的关于锁相关的类(如:ReentrantLock)等大部分是以此为基础实现的.那么我们就来分析一下AQS的原理. ...
- JAVAEE学期总结
声明:除第一张思维导图为博主所制作,其他思维导图皆来自网络,若侵权,望告知,必删除. ...
- 四步解决linux上sublime无法输入中文的问题
转载请标明博客的地址 本人博客和github账号,如果对你有帮助请在本人github项目AioSocket上点个star,激励作者对社区贡献 个人博客:https://www.cnblogs.com/ ...
- 松软科技web课堂:SQLServer之ROUND() 函数
ROUND() 函数 ROUND 函数用于把数值字段舍入为指定的小数位数. SQL ROUND() 语法 SELECT ROUND(column_name,decimals) FROM table_n ...
- 用两种以上的 方式实现一个方法或者对象,调用时打印"你好xx",已定义的代码不能做修改,自己编译的不能出现"你好"? (Javasctript)
先上代码 const obj = { say(){ Array.from(arguments).forEach(item=>{ console.log(`${this.str} ${item}` ...
- 解决Xcode10 Library not loaded: /usr/lib/libstdc++.6造成的crash及报错
关键字1:dyld: Library not loaded: /usr/lib/libstdc++.6.dylib Referenced from: 关键字2:Reason: no suitabl ...
- linux学习(七)Shell编程中的变量
目录 shell编程的建立 shell的hello world! Shell的环境变量 使用和设置环境变量 Shell的系统变量 用户自定义变量 @(Shell编程) shell编程的建立 [root ...
- Django2.1.1与xadmin0.6.0遇到的坑(一)
(1)django2.0把from django.core.urlresolvers修改成了django.urls 异常信息: ModuleNotFoundError: No module named ...
- bay——RAC 表空间时数据文件误放置到本地文件系统-介质恢复.txt
RAC添加新表空间时数据文件误放置到本地文件系统的修正 于是我想11G 也兼容这些操作的方法,但是11G的新特性有一点就是可以直接支持ASM文件系统直接可以和本地文件系统进行文件的拷贝了,也就是有三种 ...
- bay——巡检RAC操作.txt
Oracle Cluster Software 包括下列组件:Event Management (EVM)Cluster Synchronization Services (CSS)Cluster R ...