编写高质量代码:改善Java程序的151个建议(第2章:基本类型___建议26~30)
建议26:提防包装类型的null值
我们知道Java引入包装类型(Wrapper Types)是为了解决基本类型的实例化问题,以便让一个基本类型也能参与到面向对象的编程世界中。而在Java5中泛型更是对基本类型说了"不",如果把一个整型放入List中,就必须使用Integer包装类型。我们看一段代码:
import java.util.ArrayList;
import java.util.List; public class Client26 { public static int testMethod(List<Integer> list) {
int count = 0;
for (int i : list) {
count += i;
}
return count;
} public static void main(String[] args) {
List<Integer> list = new ArrayList<Integer>();
list.add(1);
list.add(2);
list.add(null);
System.out.println(testMethod(list));
}
}
testMethod接收一个元素是整型的List参数,计算所有元素之和,这在统计和项目中很常见,然后编写一个测试testMethod,在main方法中把1、2和空值都放到List中,然后调用方法计算,现在思考一下会不会报错。应该不会吧,基本类型和包装类型都是可以通过自动装箱(Autoboxing)和自动拆箱(AutoUnboxing)自由转换的,null应该可以转换为0吧,真的是这样吗?运行之后的结果是: Exception in thread "main" java.lang.NullPointerException 运行失败,报空指针异常,我们稍稍思考一下很快就知道原因了:在程序for循环中,隐含了一个拆箱过程,在此过程中包装类型转换为了基本类型。我们知道拆箱过程是通过调用包装对象的intValue方法来实现的,由于包装类型为null,访问其intValue方法报空指针异常就在所难免了。问题清楚了,修改也很简单,加入null值检查即可,代码如下:
public static int testMethod(List<Integer> list) {
int count = 0;
for (Integer i : list) {
count += (i != null) ? i : 0;
}
return count;
}
上面以Integer和int为例说明了拆箱问题,其它7个包装对象的拆箱过程也存在着同样的问题。包装对象和拆箱对象可以自由转换,这不假,但是要剔除null值,null值并不能转换为基本类型。对于此问题,我们谨记一点:包装类型参与运算时,要做null值校验。
建议27:谨慎包装类型的大小比较
基本类型是可以比较大小的,其所对应的包装类型都实现了Comparable接口,也说明了此问题,那我们来比较一下两个包装类型的大小,代码如下:
public class Client27 {
public static void main(String[] args) {
Integer i = new Integer(100);
Integer j = new Integer(100);
compare(i, j);
} public static void compare(Integer i, Integer j) {
System.out.println(i == j);
System.out.println(i > j);
System.out.println(i < j); }
}
代码很简单,产生了两个Integer对象,然后比较两个的大小关系,既然包装类型和基本类型是可以自由转换的,那上面的代码是不是就可以打印出两个相等的值呢?让事实说话,运行结果如下:
false false false
竟然是3个false,也就是说两个值之间不相等,也没大小关系,这个也太奇怪了吧。不奇怪,我们来一 一解释:
- i==j:在java中"=="是用来判断两个操作数是否有相等关系的,如果是基本类型则判断值是否相等,如果是对象则判断是否是一个对象的两个引用,也就是地址是否相等,这里很明显是两个对象,两个地址不可能相等。
- i>j 和 i<j:在Java中,">" 和 "<" 用来判断两个数字类型的大小关系,注意只能是数字类型的判断,对于Integer包装类型,是根据其intValue()方法的返回值(也就是其相应的基本类型)进行比较的(其它包装类型是根据相应的value值比较的,如doubleValue,floatValue等),那很显然,两者不肯能有大小关系的。
问题清楚了,修改总是比较容易的,直接使用Integer的实例compareTo方法即可,但是这类问题的产生更应该说是习惯问题,只要是两个对象之间的比较就应该采用相应的方法,而不是通过Java的默认机制来处理,除非你确定对此非常了解。
建议28:优先使用整型池
上一个建议我们解释了包装对象的比较问题,本建议将继续深入讨论相关问题,首先看看如下代码:
import java.util.Scanner; public class Client28 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
while (input.hasNextInt()) {
int tempInt = input.nextInt();
System.out.println("\n=====" + tempInt + " 的相等判断=====");
// 两个通过new产生的对象
Integer i = new Integer(tempInt);
Integer j = new Integer(tempInt);
System.out.println(" new 产生的对象:" + (i == j));
// 基本类型转换为包装类型后比较
i = tempInt;
j = tempInt;
System.out.println(" 基本类型转换的对象:" + (i == j));
// 通过静态方法生成一个实例
i = Integer.valueOf(tempInt);
j = Integer.valueOf(tempInt);
System.out.println(" valueOf产生的对象:" + (i == j));
}
}
}
输入多个数字,然后按照3中不同的方式产生Integer对象,判断其是否相等,注意这里使用了"==",这说明判断的不是同一个对象。我们输入三个数字127、128、555,结果如下:
127
=====127 的相等判断=====
new 产生的对象:false
基本类型转换的对象:true
valueOf产生的对象:true
128
=====128 的相等判断=====
new 产生的对象:false
基本类型转换的对象:false
valueOf产生的对象:false
555
=====555 的相等判断=====
new 产生的对象:false
基本类型转换的对象:false
valueOf产生的对象:false
很不可思议呀,数字127的比较结果竟然和其它两个数字不同,它的装箱动作所产生的对象竟然是同一个对象,valueOf产生的也是同一个对象,但是大于127的数字和128和555的比较过程中产生的却不是同一个对象,这是为什么?我们来一个一个解释。
(1)、new产生的Integer对象
new声明的就是要生成一个新的对象,没二话,这是两个对象,地址肯定不等,比较结果为false。
(2)、装箱生成的对象
对于这一点,首先要说明的是装箱动作是通过valueOf方法实现的,也就是说后两个算法相同的,那结果肯定也是一样的,现在问题是:valueOf是如何生成对象的呢?我们来阅读以下Integer.valueOf的源码:
/**
* Returns an {@code Integer} instance representing the specified
* {@code int} value. If a new {@code Integer} instance is not
* required, this method should generally be used in preference to
* the constructor {@link #Integer(int)}, as this method is likely
* to yield significantly better space and time performance by
* caching frequently requested values.
*
* This method will always cache values in the range -128 to 127,
* inclusive, and may cache other values outside of this range.
*
* @param i an {@code int} value.
* @return an {@code Integer} instance representing {@code i}.
* @since 1.5
*/
public static Integer valueOf(int i) {
assert IntegerCache.high >= 127;
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
这段代码的意思已经很明了了,如果是-128到127之间的int类型转换为Integer对象,则直接从cache数组中获得,那cache数组里是什么东西,JDK7的源代码如下:
/**
* Cache to support the object identity semantics of autoboxing for values between
* -128 and 127 (inclusive) as required by JLS.
*
* The cache is initialized on first usage. The size of the cache
* may be controlled by the -XX:AutoBoxCacheMax=<size> option.
* During VM initialization, java.lang.Integer.IntegerCache.high property
* may be set and saved in the private system properties in the
* sun.misc.VM class.
*/ private static class IntegerCache {
static final int low = -128;
static final int high;
static final Integer cache[]; static {
// high value may be configured by property
int h = 127;
String integerCacheHighPropValue =
sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
if (integerCacheHighPropValue != null) {
int i = parseInt(integerCacheHighPropValue);
i = Math.max(i, 127);
// Maximum array size is Integer.MAX_VALUE
h = Math.min(i, Integer.MAX_VALUE - (-low));
}
high = h; cache = new Integer[(high - low) + 1];
int j = low;
for(int k = 0; k < cache.length; k++)
cache[k] = new Integer(j++);
} private IntegerCache() {}
}
cache是IntegerCache内部类的一个静态数组,容纳的是-128到127之间的Integer对象。通过valueOf产生包装对象时,如果int参数在-128到127之间,则直接从整型池中获得对象,不在该范围内的int类型则通过new生成包装对象。
明白了这一点,要理解上面的输出结果就迎刃而解了,127的包装对象是直接从整型池中获得的,不管你输入多少次127这个数字,获得的对象都是同一个,那地址自然是相等的。而128、555超出了整型池范围,是通过new产生一个新的对象,地址不同,当然也就不相等了。
以上的理解也是整型池的原理,整型池的存在不仅仅提高了系统性能,同时也节约了内存空间,这也是我们使用整型池的原因,也就是在声明包装对象的时候使用valueOf生成,而不是通过构造函数来生成的原因。顺便提醒大家,在判断对象是否相等的时候,最好使用equals方法,避免使用"=="产生非预期效果。
注意:通过包装类型的valueOf生成的包装实例可以显著提高空间和时间性能。
建议29:优先选择基本类型
包装类型是一个类,它提供了诸如构造方法,类型转换,比较等非常实用的功能,而且在Java5之后又实现了与基本类型的转换,这使包装类型如虎添翼,更是应用广泛了,在开发中包装类型已经随处可见,但无论是从安全性、性能方面来说,还是从稳定性方面来说,基本类型都是首选方案。我们看一段代码:
public class Client29 {
public static void main(String[] args) {
Client29 c = new Client29();
int i = 140;
// 分别传递int类型和Integer类型
c.testMethod(i);
c.testMethod(new Integer(i));
} public void testMethod(long a) {
System.out.println(" 基本类型的方法被调用");
} public void testMethod(Long a) {
System.out.println(" 包装类型的方法被调用");
}
}
在上面的程序中首先声明了一个int变量i,然后加宽转变成long型,再调用testMethod()方法,分别传递int和long的基本类型和包装类型,诸位想想该程序是否能够编译?如果能编译,输出结果又是什么呢?
首先,这段程序绝对是能够编译的。不过,说不能编译的同学还是动了一番脑筋的,你可能猜测以下这些地方不能编译:
(1)、testMethod方法重载问题。定义的两个testMethod()方法实现了重载,一个形参是基本类型,一个形参是包装类型,这类重载很正常。虽然基本类型和包装类型有自动装箱、自动拆箱功能,但并不影响它们的重载,自动拆箱(装箱)只有在赋值时才会发生,和编译重载没有关系。
(2)、c.testMethod(i) 报错。i 是int类型,传递到testMethod(long a)是没有任何问题的,编译器会自动把 i 的类型加宽,并将其转变为long型,这是基本类型的转换法则,也没有任何问题。
(3)、c.testMethod(new Integer(i))报错。代码中没有testMethod(Integer i)方法,不可能接收一个Integer类型的参数,而且Integer和Long两个包装类型是兄弟关系,不是继承关系,那就是说肯定编译失败了?不,编译时成功的,稍后再解释为什么这里编译成功。
既然编译通过了,我们看一下输出:
基本类型的方法被调用
基本类型的方法被调用
c.testMethod(i)的输出是正常的,我们已经解释过了,那第二个输出就让人困惑了,为什么会调用testMethod(long a)方法呢?这是因为自动装箱有一个重要原则:基本类型可以先加宽,再转变成宽类型的包装类型,但不能直接转变成宽类型的包装类型。这句话比较拗口,简单的说就是,int可以加宽转变成long,然后再转变成Long对象,但不能直接转变成包装类型,注意这里指的都是自动转换,不是通过构造函数生成,为了解释这个原则,我们再来看一个例子:
public class Client29 {
public static void main(String[] args) {
Client29 c = new Client29();
int i = 140;
c.testMethod(i);
} public void testMethod(Long a) {
System.out.println(" 包装类型的方法被调用");
}
}
这段程序的编译是不通过的,因为i是一个int类型,不能自动转变为Long型,但是修改成以下代码就可以通过了:
int i = 140; long a =(long)i; c.testMethod(a);
这就是int先加宽转变成为long型,然后自动转换成Long型,规则说明了,我们继续来看testMethod(Integer.valueOf(i))是如何调用的,Integer.valueOf(i)返回的是一个Integer对象,这没错,但是Integer和int是可以互相转换的。没有testMethod(Integer i)方法?没关系,编译器会尝试转换成int类型的实参调用,Ok,这次成功了,与testMethod(i)相同了,于是乎被加宽转变成long型---结果也很明显了。整个testMethod(Integer.valueOf(i))的执行过程是这样的:
(1)、i 通过valueOf方法包装成一个Integer对象
(2)、由于没有testMethod(Integer i)方法,编译器会"聪明"的把Integer对象转换成int。
(3)、int自动拓宽为long,编译结束
使用包装类型确实有方便的方法,但是也引起一些不必要的困惑,比如我们这个例子,如果testMethod()的两个重载方法使用的是基本类型,而且实参也是基本类型,就不会产生以上问题,而且程序的可读性更强。自动装箱(拆箱)虽然很方便,但引起的问题也非常严重,我们甚至都不知道执行的是哪个方法。
注意:重申,基本类型优先考虑。
建议30:不要随便设置随机种子
随机数用的地方比较多,比如加密,混淆计算,我们使用随机数期望获得一个唯一的、不可仿造的数字,以避免产生相同的业务数据造成混乱。在Java项目中通常是通过Math.random方法和Random类来获得随机数的,我们来看一段代码:
import java.util.Random; public class Client30 {
public static void main(String[] args) {
Random r = new Random();
for(int i=1; i<=4; i++){
System.out.println("第"+i+"次:"+r.nextInt()); }
}
}
代码很简单,我们一般都是这样获得随机数的,运行此程序可知,三次打印,的随机数都不相同,即使多次运行结果也不同,这也正是我们想要随机数的原因,我们再来看看下面的程序:
public class Client30 {
public static void main(String[] args) {
Random r = new Random(1000);
for(int i=1; i<=4; i++){
System.out.println("第"+i+"次:"+r.nextInt()); }
}
}
上面使用了Random的有参构造,运行结果如下:
第1次:-1244746321
第2次:1060493871
第3次:-1826063944
第4次:1976922248
计算机不同输出的随机数也不同,但是有一点是相同的:在同一台机器上,甭管运行多少次,所打印的随机数都是相同的,也就是说第一次运行,会打印出这几个随机数,第二次运行还是打印出这三个随机数,只要是在同一台机器上,就永远都会打印出相同的随机数,似乎随机数不随机了,问题何在?
那是因为产生的随机数的种子被固定了,在Java中,随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个原则:
- 种子不同,产生不同的随机数
- 种子相同,即使实例不同也产生相同的随机数
看完上面两个规则,我们再来看这个例子,会发现问题就出在有参构造上,Random类的默认种子(无参构造)是System.nonoTime()的返回值(JDK1.5版本以前默认种子是System.currentTimeMillis()的返回值),注意这个值是距离某一个固定时间点的纳秒数,不同的操作系统和硬件有不同的固定时间点,也就是说不同的操作系统其纳秒值是不同的,而同一个操作系统纳秒值也会不同,随机数自然也就不同了.(顺便说下,System.nonoTime不能用于计算日期,那是因为"固定"的时间是不确定的,纳秒值甚至可能是负值,这点与System.currentTiemMillis不同)。
new Random(1000)显示的设置了随机种子为1000,运行多次,虽然实例不同,但都会获得相同的四个随机数,所以,除非必要,否则不要设置随机种子。
顺便提一下,在Java中有两种方法可以获得不同的随机数:通过,java.util.Random类获得随机数的原理和Math.random方法相同,Math.random方法也是通过生成一个Random类的实例,然后委托nextDouble()方法的,两者殊途同归,没有差别。
注意:若非必要,不要设置随机数种子。
编写高质量代码:改善Java程序的151个建议(第2章:基本类型___建议26~30)的更多相关文章
- 博友的 编写高质量代码 改善java程序的151个建议
编写高质量代码 改善java程序的151个建议 http://www.cnblogs.com/selene/category/876189.html
- 编写高质量代码改善java程序的151个建议——导航开篇
2014-05-16 09:08 by Jeff Li 前言 系列文章:[传送门] 下个星期度过这几天的奋战,会抓紧java的进阶学习.听过一句话,大哥说过,你一个月前的代码去看下,慘不忍睹是吧.确实 ...
- 编写高质量代码改善java程序的151个建议——[1-3]基础?亦是基础
原创地址: http://www.cnblogs.com/Alandre/ (泥沙砖瓦浆木匠),需要转载的,保留下! Thanks The reasonable man adapts himse ...
- 编写高质量代码:改善Java程序的151个建议 --[117~128]
编写高质量代码:改善Java程序的151个建议 --[117~128] Thread 不推荐覆写start方法 先看下Thread源码: public synchronized void start( ...
- 编写高质量代码:改善Java程序的151个建议 --[106~117]
编写高质量代码:改善Java程序的151个建议 --[106~117] 动态代理可以使代理模式更加灵活 interface Subject { // 定义一个方法 public void reques ...
- 编写高质量代码:改善Java程序的151个建议 --[78~92]
编写高质量代码:改善Java程序的151个建议 --[78~92] HashMap中的hashCode应避免冲突 多线程使用Vector或HashTable Vector是ArrayList的多线程版 ...
- 编写高质量代码:改善Java程序的151个建议 --[65~78]
编写高质量代码:改善Java程序的151个建议 --[65~78] 原始类型数组不能作为asList的输入参数,否则会引起程序逻辑混乱. public class Client65 { public ...
- 编写高质量代码:改善Java程序的151个建议 --[52~64]
编写高质量代码:改善Java程序的151个建议 --[52~64] 推荐使用String直接量赋值 Java为了避免在一个系统中大量产生String对象(为什么会大量产生,因为String字符串是程序 ...
- 编写高质量代码:改善Java程序的151个建议 --[36~51]
编写高质量代码:改善Java程序的151个建议 --[36~51] 工具类不可实例化 工具类的方法和属性都是静态的,不需要生成实例即可访 问,而且JDK也做了很好的处理,由于不希望被初始化,于是就设置 ...
- Github即将破百万的PDF:编写高质量代码改善JAVA程序的151个建议
在通往"Java技术殿堂"的路上,本书将为你指点迷津!内容全部由Java编码的最佳 实践组成,从语法.程序设计和架构.工具和框架.编码风格和编程思想等五大方面,对 Java程序员遇 ...
随机推荐
- OUTLOOK 发生错误0x8004010D
问题: outlook 2003 在接收邮件时报错: “正在接收”报告了错误(0x8004010D):“在包含您的数据文件的驱动器上,磁盘空间不足.请清空“已删除邮件”文件夹或删除某些文件以释放 ...
- PHP uniqid 高并发生成不重复唯一ID
http://www.51-n.com/t-4264-1-1.html PHP uniqid()函数可用于生成不重复的唯一标识符,该函数基于微秒级当前时间戳.在高并发或者间隔时长极短(如循环代码)的情 ...
- PHP文件相关的操作函数——目录操作
1.有关文件类型的函数 PHP是以UNIX的文件系统为模型的,因此在Windows系统中我们只能获得“file”.“dir”或者“unknown”三种文件类型.而在UNIX系统中,我们可以获得“blo ...
- 深入浅出NodeJS——数据通信,NET模块运行机制
互联网的运作,最根本的驱动就是信息的交互,NodeJS 在数据交互这一块做的很带感,异步编程让人很惬意,关于 NodeJS 的数据通信,最基础的两个模块是 NET 和 HTTP,前者是基于 TCP 的 ...
- 简单的JavaScript互斥锁
去年有几个项目需要使用JavaScript互斥锁,所以写了几个类似的,这是其中一个: //Published by Indream Luo //Contact: indreamluo@qq.com / ...
- Worktile 技术架构概要
其实早就该写这篇博客了,一直说忙于工作没有时间,其实时间挤挤总会有的,可能就是因为懒吧!从2013年11月一直拖到现在,今天就简单谈谈 Worktile 的技术架构吧 . Worktile 自上线到现 ...
- 《Entity Framework 6 Recipes》中文翻译系列 (46) ------ 第八章 POCO之领域对象测试和仓储测试
翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 8-8 测试领域对象 问题 你想为领域对象创建单元测试. 这主要用于,测试特定的数 ...
- 搞懂 SynchronizationContext(第一部分)【翻译】
SynchronizationContext -MSDN 很让人失望 我不知道为什么,目前在.Net下关于这个类只有很少的资料.MSDN文档也只有很少的关于如何使用SynchronizationCon ...
- Java中迭代器
任何容器类,都必须有某种方法可以插入元素并将它们再次取回,毕竟,持有事物是容器最基本的工作,对于List,add()是出入元素的方法之一,而get()是取出元素的方法之一. 如果从更高层的角度思考,会 ...
- weblogic10内存溢出解决方法
在开发过程中经常会遇到weblogic内存溢出问题,用下面的办法解决了. 找到domain/bin下的setDomainEnv.cmd文件,里面可以找到以下四行代码,将值该打一倍,重启服务. set ...