seq2seq+attention解读
2.Attention Mechanism原理
要介绍Attention Mechanism结构和原理,首先需要介绍下Seq2Seq模型的结构。Seq2Seq模型,想要解决的主要问题是,如何把机器翻译中,变长的输入X映射到一个变长输出Y的问题,其主要结构如图3所示。
图3 传统的Seq2Seq结构
从图中可以看出,seq2seq模型分为两个阶段:编码阶段和解码阶段。
编码阶段:
把一个变长的输入序列x1,x2,x3....xt输入RNN,LSTM或GRU模型,然后将得到各个隐藏层的输出进行汇总,生成语义向量:
也可以将最后的一层隐藏层的输出作为语义向量C :
这里的语义向量c有两个作用:1、做为decoder模型预测y1的初始向量。2、做为语义向量,指导y序列中每一个step的y的产出。
解码阶段:
Decoder主要是基于语义向量c和上一步的输出yi-1解码得到该时刻t的输出yi:
yi=g(yi-1,Si,C)
其中Si为隐藏层的输出。其中g代表的是非线性激活函数。
直到碰到结束标志(<EOS>),解码结束。
以上就是seq2seq的编码解码阶段。从上面可以看出,该模型存在两个明显的问题:
1、把输入X的所有信息有压缩到一个固定长度的隐向量C。当输入句子长度很长,特别是比训练集中最初的句子长度还长时,模型的性能急剧下降。
2、把输入X编码成一个固定的长度,对于句子中每个词都赋予相同的权重,这样做是不合理的,比如,在机器翻译里,输入的句子与输出句子之间,往往是输入一个或几个词对应于输出的一个或几个词。因此,对输入的每个词赋予相同权重,这样做没有区分度,往往是模型性能下降。
因此,需要引入Attention Mechanism来解决这个问题。
我们将解码yi时的公式改为如下形式:
yi=g(yi-1,Si,Ci)
即不同时刻的输出y使用不同的语义向量。
其中,si是decoder中RNN在在i时刻的隐状态,其计算公式为:
这里的语义向量ci的计算方式,与传统的Seq2Seq模型直接累加的计算方式不一样,这里的ci是一个权重化(Weighted)之后的值,其表达式如公式5所示:
其中,i表示decoder端的第i个词,hj表示encoder端的第j个词的隐向量,aij表示encoder端的第j个词与decoder端的第i个词之间的权值,表示源端第j个词对目标端第i个词的影响程度,aij的计算公式如公式6所示:
在公式6中,aij是一个softmax模型输出,概率值的和为1。eij用于衡量encoder端的位置j个词,对于decoder端的位置i个词的影响程度,换句话说:decoder端生成位置i的词时,有多少程度受encoder端的位置j的词影响。eij的计算方式有很多种,不同的计算方式,代表不同的Attention模型,最简单且最常用的的对齐模型是dot product乘积矩阵,即把解码端的输出隐状态ht与编码端的输出隐状态hs进行矩阵乘。常见的对齐计算方式如下:
常见的计算方式有以上几种方式。点乘(Dot product),权值网络映射(General)和concat映射几种方式。
seq2seq+attention解读的更多相关文章
- DL4NLP —— seq2seq+attention机制的应用:文档自动摘要(Automatic Text Summarization)
两周以前读了些文档自动摘要的论文,并针对其中两篇( [2] 和 [3] )做了presentation.下面把相关内容简单整理一下. 文本自动摘要(Automatic Text Summarizati ...
- seq2seq attention
1.seq2seq:分为encoder和decoder a.在decoder中,第一时刻输入的是上encoder最后一时刻的状态,如果用了双向的rnn,那么一般使用逆序的最后一个时刻的输出(网上说实验 ...
- 深度学习中的序列模型演变及学习笔记(含RNN/LSTM/GRU/Seq2Seq/Attention机制)
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻 ...
- Tensorflow Seq2seq attention decode解析
tensorflow基于 Grammar as a Foreign Language实现,这篇论文给出的公式也比较清楚. 这里关注seq2seq.attention_decode函数, 主要输入 de ...
- seq2seq&attention图解
- NLP Attention
一.概述 自动摘要可以从很多角度进行分类,例如单文档摘要/多文档摘要.单语言摘要/跨语言摘要等.从技术上说,普遍可以分为三类: i. 抽取式摘要(extractive),直接从原文中抽取一些句子组成摘 ...
- attention 汇总(持续)
Seq2seq Attention Normal Attention 1. 在decoder端,encoder state要进行一个线性变换,得到r1,可以用全连接,可以用conv,取决于自己,这里 ...
- Attention & Transformer
Attention & Transformer seq2seq; attention; self-attention; transformer; 1 注意力机制在NLP上的发展 Seq2Seq ...
- NLP之基于Seq2Seq和注意力机制的句子翻译
Seq2Seq(Attention) @ 目录 Seq2Seq(Attention) 1.理论 1.1 机器翻译 1.1.1 模型输出结果处理 1.1.2 BLEU得分 1.2 注意力模型 1.2.1 ...
随机推荐
- 11.Django基础九之中间件
一 前戏 我们在前面的课程中已经学会了给视图函数加装饰器来判断是用户是否登录,把没有登录的用户请求跳转到登录页面.我们通过给几个特定视图函数加装饰器实现了这个需求.但是以后添加的视图函数可能也需要加上 ...
- 对vue nextTick深入理解-vue性能优化、DOM更新时机、事件循环机制
一.定义[nextTick.事件循环] nextTick的由来: 由于VUE的数据驱动视图更新,是异步的,即修改数据的当下,视图不会立刻更新,而是等同一事件循环中的所有数据变化完成之后,再统一进行视图 ...
- Windows定时备份Mysql数据库
1.新建批处理文件bat(随意命名:如auto_backup_mysql_data.bat) 2.在批处理文件里添加如下命令 %1 mshta vbscript:createobject(" ...
- 一文彻底理解Redis序列化协议,你也可以编写Redis客户端
前提 最近学习Netty的时候想做一个基于Redis服务协议的编码解码模块,过程中顺便阅读了Redis服务序列化协议RESP,结合自己的理解对文档进行了翻译并且简单实现了RESP基于Java语言的解析 ...
- 软件开发工具(第7章:Eclipse入门)
一.Eclipse简介 Eclipse [iˈklips],是一个开放源代 码的.基于Java的可扩展集成应 用程序开发环境. Eclipse最初主要用来进行Java语 言开发,但并非只有这个用途. ...
- Android系统介绍与框架
一.Andriod是什么? Android系统是Google开发的一款开源移动OS,Android中文名被国内用户俗称“安卓”.Android操作系统基于Linux内核设计,使用了Google公司自己 ...
- MySQL日期和时间类型笔记
最近在看<MySQL技术内幕:SQL编程>并做了笔记,这是一篇笔记类型博客,分享出来方便自己复习,也可以帮助其他人 一.日期时间类型所占空间对比 各种日期时间数据类型所占的空间: 类型 所 ...
- Nebula 架构剖析系列(一)图数据库的存储设计
摘要 在讨论某个数据库时,存储 ( Storage ) 和计算 ( Query Engine ) 通常是讨论的热点,也是爱好者们了解某个数据库不可或缺的部分.每个数据库都有其独有的存储.计算方式,今天 ...
- spring Bean的三种配置方式
Spring Bean有三种配置方式: 传统的XML配置方式 基于注解的配置 基于类的Java Config 添加spring的maven repository <dependency> ...
- Java通信——获取自己IP
获取自己的IP地址 import java.net.InetAddress; import java.net.UnknownHostException; public class getip { pu ...