哈夫曼树C++实现详解
哈夫曼树的介绍
Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树。
定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树。 这个定义里面涉及到了几个陌生的概念,下面就是一颗哈夫曼树,我们来看图解答。
(01) 路径和路径长度
定义:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。
例子:100和80的路径长度是1,50和30的路径长度是2,20和10的路径长度是3。
(02) 结点的权及带权路径长度
定义:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。
例子:节点20的路径长度是3,它的带权路径长度= 路径长度 * 权 = 3 * 20 = 60。
(03) 树的带权路径长度
定义:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL。
例子:示例中,树的WPL= 1*100 + 2*80 + 3*20 + 3*10 = 100 + 160 + 60 + 30 = 350。
比较下面两棵树
上面的两棵树都是以{10, 20, 50, 100}为叶子节点的树。
左边的树WPL=2*10 + 2*20 + 2*50 + 2*100 = 360
右边的树WPL=350
左边的树WPL > 右边的树的WPL。你也可以计算除上面两种示例之外的情况,但实际上右边的树就是{10,20,50,100}对应的哈夫曼树。至此,应该堆哈夫曼树的概念有了一定的了解了,下面看看如何去构造一棵哈夫曼树。
哈夫曼树的图文解析
假设有n个权值,则构造出的哈夫曼树有n个叶子结点。 n个权值分别设为 w1、w2、…、wn,哈夫曼树的构造规则为:
1. 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点);
2. 在森林中选出根结点的权值最小的两棵树进行合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;
3. 从森林中删除选取的两棵树,并将新树加入森林;
4. 重复(02)、(03)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。
以{5,6,7,8,15}为例,来构造一棵哈夫曼树。
第1步:创建森林,森林包括5棵树,这5棵树的权值分别是5,6,7,8,15。
第2步:在森林中,选择根节点权值最小的两棵树(5和6)来进行合并,将它们作为一颗新树的左右孩子(谁左谁右无关紧要,这里,我们选择较小的作为左孩子),并且新树的权值是左右孩子的权值之和。即,新树的权值是11。 然后,将"树5"和"树6"从森林中删除,并将新的树(树11)添加到森林中。
第3步:在森林中,选择根节点权值最小的两棵树(7和8)来进行合并。得到的新树的权值是15。 然后,将"树7"和"树8"从森林中删除,并将新的树(树15)添加到森林中。
第4步:在森林中,选择根节点权值最小的两棵树(11和15)来进行合并。得到的新树的权值是26。 然后,将"树11"和"树15"从森林中删除,并将新的树(树26)添加到森林中。
第5步:在森林中,选择根节点权值最小的两棵树(15和26)来进行合并。得到的新树的权值是41。 然后,将"树15"和"树26"从森林中删除,并将新的树(树41)添加到森林中。
此时,森林中只有一棵树(树41)。这棵树就是我们需要的哈夫曼树!
哈夫曼树的基本操作
哈夫曼树的重点是如何构造哈夫曼树。本文构造哈夫曼时,用到了以前介绍过的"(二叉堆)最小堆"。下面对哈夫曼树进行讲解。
1. 基本定义
GIF
template <class T>class HuffmanNode{ public: T key; // 权值 HuffmanNode *left; // 左孩子 HuffmanNode *right; // 右孩子 HuffmanNode *parent;// 父结点 HuffmanNode(){} HuffmanNode(T value, HuffmanNode *l, HuffmanNode *r, HuffmanNode *p): key(value),left(l),right(r),parent(p) {}};
HuffmanNode是哈夫曼树的节点类。
template <class T>class Huffman { private: HuffmanNode<T> *mRoot; // 根结点 public: Huffman(); ~Huffman(); // 前序遍历"Huffman树" void preOrder(); // 中序遍历"Huffman树" void inOrder(); // 后序遍历"Huffman树" void postOrder(); // 创建Huffman树 void create(T a[], int size); // 销毁Huffman树 void destroy(); // 打印Huffman树 void print(); private: // 前序遍历"Huffman树" void preOrder(HuffmanNode<T>* tree) const; // 中序遍历"Huffman树" void inOrder(HuffmanNode<T>* tree) const; // 后序遍历"Huffman树" void postOrder(HuffmanNode<T>* tree) const; // 销毁Huffman树 void destroy(HuffmanNode<T>* &tree); // 打印Huffman树 void print(HuffmanNode<T>* tree, T key, int direction);};
Huffman是哈夫曼树对应的类,它包含了哈夫曼树的根节点和哈夫曼树的相关操作。
2. 构造哈夫曼树
/* * 创建Huffman树 * * 参数说明: * a 权值数组 * size 数组大小 * * 返回值: * Huffman树的根节点 */template <class T>void Huffman<T>::create(T a[], int size){ int i; HuffmanNode<T> *left, *right, *parent; MinHeap<T> *heap = new MinHeap<T>(); // 建立数组a对应的最小堆 heap->create(a, size); for(i=0; i<size-1; i++) { left = heap->dumpFromMinimum(); // 最小节点是左孩子 right = heap->dumpFromMinimum(); // 其次才是右孩子 // 新建parent节点,左右孩子分别是left/right; // parent的大小是左右孩子之和 parent = new HuffmanNode<T>(left->key+right->key, left, right, NULL); left->parent = parent; right->parent = parent; // 将parent节点数据拷贝到"最小堆"中 if (heap->copyOf(parent)!=0) { cout << "插入失败!" << endl << "结束程序" << endl; destroy(parent); parent = NULL; break; } } mRoot = parent; // 销毁最小堆 heap->destroy(); delete heap;}
首先通过heap->create(a, size)来创建最小堆。最小堆构造完成之后,进入for循环。
每次循环时:
(01) 首先,将最小堆中的最小节点拷贝一份并赋值给left,然后重塑最小堆(将最小节点和后面的节点交换位置,接着将"交换位置后的最小节点"之前的全部元素重新构造成最小堆);
(02) 接着,再将最小堆中的最小节点拷贝一份并将其赋值right,然后再次重塑最小堆;
(03) 然后,新建节点parent,并将它作为left和right的父节点;
(04) 接着,将parent的数据复制给最小堆中的指定节点。
在二叉堆中已经介绍过堆,这里就不再对堆的代码进行说明了。
哈夫曼树C++实现详解的更多相关文章
- java实现哈夫曼树进行文件加解压
目录 1.哈夫曼树简述 2.构造树的节点 3.构造哈夫曼树的类(压缩) 4.构造哈夫曼树的类(解压) 5.整体工程文件(包括测试类) 6.结果 7.参考链接 1.哈夫曼树简述 给定n个权值作为n个叶子 ...
- 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- 哈夫曼树(三)之 Java详解
前面分别通过C和C++实现了哈夫曼树,本章给出哈夫曼树的java版本. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:htt ...
- 哈夫曼树(二)之 C++详解
上一章介绍了哈夫曼树的基本概念,并通过C语言实现了哈夫曼树.本章是哈夫曼树的C++实现. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载 ...
- 哈夫曼树(一)之 C语言详解
本章介绍哈夫曼树.和以往一样,本文会先对哈夫曼树的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可.若 ...
- 哈夫曼树详解——PHP代码实现
在介绍哈夫曼树之前需要先了解一些专业术语 路径和路径长度 在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径.通路中分支的数目称为路径长度.若规定根结点的层数为1,则从根结点到第L ...
- word2vec 中的数学原理二 预备知识 霍夫曼树
主要参考: word2vec 中的数学原理详解 自己动手写 word2vec 编码的话,根是不记录在编码中的 这一篇主要讲的就是霍夫曼树(最优二叉树)和编码. ...
- Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树
Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 目录 Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 0x00 摘要 0x01 背景概念 1.1 词向量基础 ...
- java实现哈弗曼树和哈夫曼树压缩
本篇博文将介绍什么是哈夫曼树,并且如何在java语言中构建一棵哈夫曼树,怎么利用哈夫曼树实现对文件的压缩和解压.首先,先来了解下什么哈夫曼树. 一.哈夫曼树 哈夫曼树属于二叉树,即树的结点最多拥有2个 ...
随机推荐
- Node 与JS的区别
1.nodejs是运行于服务器端的:2.global:代表node当中的一个全局对象,类似于浏览器当中的window,定义全局对象:global.a:3.作用域:nodejs中一个文件就是一个作用域: ...
- iOS 开发中一些 tips
tableView 的 tableHeaderView 高度不正确的问题: func forceRefreshHeader() { let size = headerView.systemLayout ...
- (七十五)c#Winform自定义控件-控件水印组件
前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. GitHub:https://github.com/kwwwvagaa/NetWinformControl 码云:ht ...
- scrapy和scrapy-redis的区别
scrapy是一个python爬虫框架,爬取的效率极高,具有高度的定制性,但是不支持分布式.而scrapy-redis是一套基于redis库,运行在scrapy框架之上的组件,可以让scapy支持分布 ...
- mysql--命令行创建数据库
MySQL 1. 连接到本机上的MYSQL. 首先打开DOS窗口,然后进入目录mysql\bin,再键入命令mysql -u root -p,回车后提示你输密码.注意用户名前可以有空格也可以没有空格 ...
- 《菜鸟程序员成长之路:从技术小白到阿里巴巴Java工程师》
<菜鸟程序员成长之路:从技术小白到阿里巴巴Java工程师> 国庆节快乐!一年一度长度排第二的假期终于来了. 难得有十一长假,作者也想要休息几天啦. 不管你是选择出门玩,还是在公司加班,在学 ...
- Sentinel Cluster流程分析
前面介绍了sentinel-core的流程,提到在进行流控判断时,会判断当前是本地限流,还是集群限流,若是集群模式,则会走另一个分支,这节便对集群模式做分析. 一.基本概念 namespace:限 ...
- 对于java的Sting.intern()的一些注意
今天翻看书时遇到了这样一个问题,对于String.intern()方法又有了一些认识和看法.首先我们看它的api 大意就是intern()方法会在常量池中记录首次出现的实例引用,但是在jdk1.6中却 ...
- 使用springboot最新版本mysql-Connector连接数据库时报错解决
在连接数据库时,使用了最新版本的mysql-Connector,即6.0以上版本 1.报错如下: Loading class `com.mysql.jdbc.Driver'. This is depr ...
- 基于Python协同过滤算法的认识
Contents 1. 协同过滤的简介 2. 协同过滤的核心 3. 协同过滤的实现 4. 协同过滤的应用 1. 协同过滤的简介 关于协同过滤的一个最经典的例子就是看电影,有时候 ...