Redis优化建议
优化的一些建议
1、尽量使用短的key
当然在精简的同时,不要完了key的“见名知意”。对于value有些也可精简,比如性别使用0、1。
**2、避免使用keys ***
keys *, 这个命令是阻塞的,即操作执行期间,其它任何命令在你的实例中都无法执行。当redis中key数据量小时到无所谓,数据量大就很糟糕了。所以我们应该避免去使用这个命令。可以去使用SCAN,来代替。
3、在存到Redis之前先把你的数据压缩下
redis为每种数据类型都提供了两种内部编码方式,在不同的情况下redis会自动调整合适的编码方式。
4、设置 key 有效期
我们应该尽可能的利用key有效期。比如一些临时数据(短信校验码),过了有效期Redis就会自动为你清除!
5、选择回收策略(maxmemory-policy)
当 Redis 的实例空间被填满了之后,将会尝试回收一部分key。根据你的使用方式,强烈建议使用 volatile-lru(默认) 策略——前提是你对key已经设置了超时。但如果你运行的是一些类似于 cache 的东西,并且没有对 key 设置超时机制,可以考虑使用 allkeys-lru 回收机制,具体讲解查看 。maxmemory-samples 3 是说每次进行淘汰的时候 会随机抽取3个key 从里面淘汰最不经常使用的(默认选项)
maxmemory-policy 六种方式 :
- volatile-lru:只对设置了过期时间的key进行LRU(默认值)
- allkeys-lru : 是从所有key里 删除 不经常使用的key
- volatile-random:随机删除即将过期key
- allkeys-random:随机删除
- volatile-ttl : 删除即将过期的
- noeviction : 永不过期,返回错误
6、使用bit位级别操作和byte字节级别操作来减少不必要的内存使用。
- bit位级别操作:GETRANGE, SETRANGE, GETBIT and SETBIT
- byte字节级别操作:GETRANGE and SETRANGE
7、尽可能地使用hashes哈希存储。
8、当业务场景不需要数据持久化时,关闭所有的持久化方式可以获得最佳的性能。
9、想要一次添加多条数据的时候可以使用管道。
10、限制redis的内存大小(64位系统不限制内存,32位系统默认最多使用3GB内存)
数据量不可预估,并且内存也有限的话,尽量限制下redis使用的内存大小,这样可以避免redis使用swap分区或者出现OOM错误。(使用swap分区,性能较低,如果限制了内存,当到达指定内存之后就不能添加数据了,否则会报OOM错误。可以设置maxmemory-policy,内存不足时删除数据。)
11、SLOWLOG [get/reset/len]
- slowlog-log-slower-than 它决定要对执行时间大于多少微秒(microsecond,1秒 = 1,000,000 微秒)的命令进行记录。
- slowlog-max-len 它决定 slowlog 最多能保存多少条日志,当发现redis性能下降的时候可以查看下是哪些命令导致的。
优化实例分析
管道性能测试
redis的管道功能在命令行中没有,但是redis是支持管道的,在java的客户端(jedis)中是可以使用的:
示例代码
//注:具体耗时,和自身电脑有关(博主是在虚拟机中运行的数据)
/**
* 不使用管道初始化1W条数据
* 耗时:3079毫秒
* @throws Exception
*/
@Test
public void NOTUsePipeline() throws Exception {
Jedis jedis = JedisUtil.getJedis();
long start_time = System.currentTimeMillis();
for (int i = 0; i < 10000; i++) {
jedis.set("aa_"+i, i+"");
}
System.out.println(System.currentTimeMillis()-start_time);
}
/**
* 使用管道初始化1W条数据
* 耗时:255毫秒
* @throws Exception
*/
@Test
public void usePipeline() throws Exception {
Jedis jedis = JedisUtil.getJedis();
long start_time = System.currentTimeMillis();
Pipeline pipelined = jedis.pipelined();
for (int i = 0; i < 10000; i++) {
pipelined.set("cc_"+i, i+"");
}
pipelined.sync();//执行管道中的命令
System.out.println(System.currentTimeMillis()-start_time);
}
hash的应用
示例:我们要存储一个用户信息对象数据,包含以下信息:
key为用户ID,value为用户对象(姓名,年龄,生日等)如果用普通的key/value结构来存储,主要有以下2种存储方式:
- 将用户ID作为查找key,把其他信息封装成一个对象以序列化的方式存储
缺点:增加了序列化/反序列化的开销,引入复杂适应系统(Complex adaptive system,简称CAS)修改其中一项信息时,需要把整个对象取回,并且修改操作需要对并发进行保护。
- 用户信息对象有多少成员就存成多少个key-value对
虽然省去了序列化开销和并发问题,但是用户ID为重复存储。
- Redis提供的Hash很好的解决了这个问题,提供了直接存取这个Map成员的接口。Key仍然是用户ID, value是一个Map,这个Map的key是成员的属性名,value是属性值。( 内部实现:Redis Hashd的Value内部有2种不同实现,Hash的成员比较少时Redis为了节省内存会采用类似一维数组的方式来紧凑存储,而不会采用真正的HashMap结构,对应的value redisObject的encoding为zipmap,当成员数量增大时会自动转成真正的HashMap,此时encoding为ht )。
Instagram内存优化
Instagram可能大家都已熟悉,当前火热的拍照App,月活跃用户3亿。四年前Instagram所存图片3亿多时需要解决一个问题:想知道每一张照片的作者是谁(通过图片ID反查用户UID),并且要求查询速度要相当的块,如果把它放到内存中使用String结构做key-value:
HSET "mediabucket:1155" "1155315" "939"
HGET "mediabucket:1155" "1155315"
"939"
测试:1百万数据会用掉70MB内存,3亿张照片就会用掉21GB的内存。当时(四年前)最好是一台EC2的 high-memory 机型就能存储(17GB或者34GB的,68GB的太浪费了),想把它放到16G机型中还是不行的。
Instagram的开发者向Redis的开发者之一Pieter Noordhuis询问优化方案,得到的回复是使用Hash结构。具体的做法就是将数据分段,每一段使用一个Hash结构存储.
由于Hash结构会在单个Hash元素在不足一定数量时进行压缩存储,所以可以大量节约内存。这一点在上面的String结构里是不存在的。而这个一定数量是由配置文件中的hash-zipmap-max-entries参数来控制的。经过实验,将hash-zipmap-max-entries设置为1000时,性能比较好,超过1000后HSET命令就会导致CPU消耗变得非常大。
HSET "mediabucket:1155" "1155315" "939"
HGET "mediabucket:1155" "1155315"
"939"
测试:1百万消耗16MB的内存。总内存使用也降到了5GB。当然我们还可以优化,去掉mediabucket:key长度减少了12个字节。
HSET "1155" "315" "939"
HGET "1155" "315"
"939"
启动时WARNING优化
在我们启动redis时,默认会出现如下三个警告:
- 一、修改linux中TCP监听的最大容纳数量
WARNING: The TCP backlog setting of 511 cannot be enforced because
/proc/sys/net/core/somaxconn is set to the lower value of 128.
在高并发环境下你需要一个高backlog值来避免慢客户端连接问题。注意Linux内核默默地将这个值减小到/proc/sys/net/core/somaxconn的值,所以需要确认增大somaxconn和tcp_max_syn_backlog两个值来达到想要的效果。
echo 511 > /proc/sys/net/core/somaxconn
注意:这个参数并不是限制redis的最大链接数。如果想限制redis的最大连接数需要修改maxclients,默认最大连接数为10000
- 二、修改linux内核内存分配策略
错误日志:WARNING overcommit_memory is set to 0! Background save may fail under low memory condition.
To fix this issue add 'vm.overcommit_memory = 1' to /etc/sysctl.conf and then reboot or
run the command 'sysctl vm.overcommit_memory=1'
原因:
redis在备份数据的时候,会fork出一个子进程,理论上child进程所占用的内存和parent是一样的,比如parent占用的内存为8G,这个时候也要同样分配8G的内存给child,如果内存无法负担,往往会造成redis服务器的down机或者IO负载过高,效率下降。所以内存分配策略应该设置为 1(表示内核允许分配所有的物理内存,而不管当前的内存状态如何)。
内存分配策略有三种
可选值:0、1、2。
0, 表示内核将检查是否有足够的可用内存供应用进程使用;如果有足够的可用内存,内存申请允许;否则,内存申请失败,并把错误返回给应用进程。
1, 不管需要多少内存,都允许申请。
2, 只允许分配物理内存和交换内存的大小(交换内存一般是物理内存的一半)。
三、关闭Transparent Huge Pages(THP)
THP会造成内存锁影响redis性能,建议关闭
Transparent HugePages :用来提高内存管理的性能
Transparent Huge Pages在32位的RHEL 6中是不支持的
执行命令 echo never > /sys/kernel/mm/transparent_hugepage/enabled
把这条命令添加到这个文件中/etc/rc.local
原文出处
xiaoxiaomo -> http://blog.xiaoxiaomo.com/2016/05/02/Redis-%E4%BC%98%E5%8C%96%E8%AF%A6%E8%A7%A3/
Redis优化建议的更多相关文章
- Redis系列--内存淘汰机制(含单机版内存优化建议)
https://blog.csdn.net/Jack__Frost/article/details/72478400?locationNum=13&fps=1 每台redis的服务器的内存都是 ...
- Redis 优化查询性能
一次使用 Redis 优化查询性能的实践 应用背景 有一个应用需要上传一组ID到服务器来查询这些ID所对应的数据,数据库中存储的数据量是7千万,每次上传的ID数量一般都是几百至上千数量级别. 以前 ...
- 一次使用 Redis 优化查询性能的实践
因为我的个人网站 restran.net 已经启用,博客园的内容已经不再更新.请访问我的个人网站获取这篇文章的最新内容,一次使用 Redis 优化查询性能的实践 应用背景 有一个应用需要上传一组ID到 ...
- mysql锁机制总结,以及优化建议
一.锁概述和分类 二.表锁 偏向MyISAM存储引擎,开销小,加锁快:无死锁:锁定粒度大,发生锁冲突的概率最高,并发度最低. [手动增加表锁] lock table 表名字1 read(write), ...
- .NET程序的性能要领和优化建议
前几天在老赵的博客上看到,Bill Chiles (Roslyn 编译器的Program Manager)写了一篇文章叫做<Essential Performance Facts and .NE ...
- Unity 几种优化建议
转: http://user.qzone.qq.com/289422269/blog/1453815561?ptlang=2052 Unity 几种优化建议 最简单的优化建议: 1.PC平台的话保持场 ...
- Unity开发-你必须知道的优化建议
转自:http://blog.csdn.net/leonwei/article/details/18042603 最近研究U3D开发,个人认为,精通一种新的技术,最快最好的方法就是看它的documen ...
- mysql性能优化学习笔记-参数介绍及优化建议
MySQL服务器参数介绍 mysql参数介绍(客户端中执行),尽量只修改session级别的参数. 全局参数(新连接的session才会生效,原有已经连接的session不生效) set global ...
- Jquery学习笔记--性能优化建议
一.选择器性能优化建议 1. 总是从#id选择器来继承 这是jQuery选择器的一条黄金法则.jQuery选择一个元素最快的方法就是用ID来选择了. 1 $('#content').hide(); 或 ...
随机推荐
- MxNet 模型转Tensorflow pb模型
用mmdnn实现模型转换 参考链接:https://www.twblogs.net/a/5ca4cadbbd9eee5b1a0713af 安装mmdnn pip install mmdnn 准备好mx ...
- Codeforces 776C:Molly's Chemicals(思维)
http://codeforces.com/problemset/problem/776/C 题意:给出一个有n个数的序列,还有一个k,问在这个序列中有多少个子序列使得sum[l, r] = k^0, ...
- HDU 6011:Lotus and Characters(贪心)
http://acm.hdu.edu.cn/showproblem.php?pid=6011 题意:共有n种字符,每种字符有一个val和一个cnt,代表这个字符的价值和数量.可以制造的总价值是:第一个 ...
- java 学习之路第一节
一.安装mysql驱动:http://mvnrepository.com/search?q=mysql-conn 二.看数据库中有什么表安装:navicat for MySQL 文件类写数据库查询: ...
- flask请求上下文 (转)
本篇阅读目录 一.flask中的CBV 二.werkzeug + 上下文初步解读 三.偏函数和线程安全 回到顶部 一.flask中的CBV 对比django中的CBV,我们来看一下flask中的CBV ...
- Win10自动更新关闭方法
一.为什么很多人会选择禁用Win10自动更新? 1.win10自动更新定义: Win 10的自动更新功能,即 Windows Update.这项功能本意是为一些软件.漏洞等提供更新服务.一般来说,只要 ...
- async与await详解
async和await只是编译器功能.编译器会用Task类创建代码.如果不适用这两个关键字,也可以用C#4.0和Task类实现同样的功能,只是没有那么方便. 题主在概念上确实混淆的不行,但是确实asy ...
- Java学习笔记之---构造方法
Java学习笔记之---构造方法 (一)构造方法的特性 构造方法不能被对象单独调用 构造方法与类同名且没有返回值 构造方法只能在对象实例化的时候被调用 当没有指定构造方法时,系统会自动添加无参的构造方 ...
- CDQZ集训DAY7 日记
并没有考试然而心情比考试还糟糕…… 上午讲的基本就听不懂,讲课人迷之停顿.根本让人跟不上趟,声音好奇怪的说……好不容易讲到反演,Hzoi集体上线,等待装逼时刻的到来.然而,讲课人再次迷之停顿,讲一个p ...
- Bzoj 3813 奇数国 题解 数论+线段树+状压
3813: 奇数国 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 748 Solved: 425[Submit][Status][Discuss] ...