http://poj.org/problem?id=3621

题意:有n个点m条有向边,每个点有一个点权val[i],边有边权w(i, j)。找一个环使得Σ(val) / Σ(w)最大,并输出。

思路:和之前的最优比率生成树类似,还是构造成这样的式子:F(L) = Σ(val[i] * x[i]) - Σ(w[i] * x[i] * L) = Σ(d[i]) * x[i] (d[i] = val[i] - w[i] * L),要使得L越大越好。

那么当L越大的时候,F(L)就越小,如果F(L)大于等于0的话,说明是可以改进的,于是要找最大的d[i],使得结果更优。这样就是求最长路并判正环。但是并不好处理。

那么反过来,F(L) = Σ(-d[i] * x[i]),就是要求得最短路并判负环,这样就可以直接套SPFA了。如果有负环的话,说明可以得到更优的结果。

还有起点是不固定的,于是一开始先把所有的点入队,然后再去求。

 #include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
#define N 10010
#define INF 0x3f3f3f3f
const double eps = 1e-;
struct Edge {
int v, w, nxt;
} edge[N];
int n, m, val[N], vis[N], tid[N], head[N], tot;
double dis[N]; void Add(int u, int v, int w) { edge[tot] = (Edge) {v, w, head[u]}; head[u] = tot++; } bool SPFA(double k) {
queue<int> que;
memset(tid, , sizeof(tid));
for(int i = ; i <= n; i++) que.push(i), vis[i] = , dis[i] = , tid[i] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
tid[u]++; vis[u] = ;
if(tid[u] > n) return false;
for(int i = head[u]; ~i; i = edge[i].nxt) {
int v = edge[i].v;
double d = (double)val[v] - k * edge[i].w;
if(dis[v] > dis[u] - d) {
dis[v] = dis[u] - d;
if(!vis[v]) vis[v] = , que.push(v);
}
}
}
return true;
} double solve() {
double l = , r = INF;
while(fabs(r - l) > eps) {
double mid = (l + r) / ;
if(SPFA(mid)) r = mid;
else l = mid;
}
return l;
} int main() {
while(~scanf("%d%d", &n, &m)) {
tot = ; memset(head, -, sizeof(head));
for(int i = ; i <= n; i++) scanf("%d", &val[i]);
for(int i = ; i < m; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
Add(u, v, w);
}
printf("%.2f\n", solve());
}
return ;
}

POJ 3621:Sightseeing Cows(最优比率环)的更多相关文章

  1. POJ 3621 Sightseeing Cows [最优比率环]

    感觉去年9月的自己好$naive$ http://www.cnblogs.com/candy99/p/5868948.html 现在不也是嘛 裸题,具体看学习笔记 二分答案之后判负环就行了 $dfs$ ...

  2. POJ3621 Sightseeing Cows 最优比率环 二分法

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  3. POJ3621 Sightseeing Cows(最优比率环)

    题目链接:id=3621">http://poj.org/problem?id=3621 在一个有向图中选一个环,使得环上的点权和除以边权和最大.求这个比值. 经典的分数规划问题,我认 ...

  4. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  5. [POJ 3621] Sightseeing Cows

    [题目链接] http://poj.org/problem?id=3621 [算法] 01分数规划(最优比率环) [代码] #include <algorithm> #include &l ...

  6. POJ 3621 Sightseeing Cows (最优比率环 01分数划分)

    题意: 给定L个点, P条边的有向图, 每个点有一个价值, 但只在第一经过获得, 每条边有一个花费, 每次经过都要付出这个花费, 在图中找出一个环, 使得价值之和/花费之和 最大 分析: 这道题其实并 ...

  7. POJ 3621 Sightseeing Cows(最优比例环+SPFA检测)

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10306   Accepted: 3519 ...

  8. POJ 3621 Sightseeing Cows 01分数规划,最优比例环的问题

    http://www.cnblogs.com/wally/p/3228171.html 题解请戳上面 然后对于01规划的总结 1:对于一个表,求最优比例 这种就是每个点位有benefit和cost,这 ...

  9. POJ 3621 Sightseeing Cows | 01分数规划

    题目: http://poj.org/problem?id=3621 题解: 二分答案,检查有没有负环 #include<cstdio> #include<algorithm> ...

  10. POJ 3621 Sightseeing Cows (bellman-Ford + 01分数规划)

    题意:给出 n 个点 m 条有向边,要求选出一个环,使得这上面 点权和/边权和 最大. 析:同样转成是01分数规划的形式,F / L 要这个值最大,也就是 G(r) = F - L * r 这个值为0 ...

随机推荐

  1. PHP模拟POST提交数据并获得返回值之CURL方法(使用PHP extension,然后使用php_curl.dll,很不错)

    今天公司做个东西,需要条用同事的接口,我的代码和他的代码不在同一个域下,但是都是子域. a.ifensi.com与b.ifensi.com的关系. 我需要传递一个关联数组过去,他那边给我返回一个jso ...

  2. 【C#】获取任意文件的缩略图

    原文:[C#]获取任意文件的缩略图 因为用shell取缩略图时,对于损坏的文件,读出来的图有黑边,所以就诞生了以下方法,不过这个效率要比用shell取的低3-4倍. 1.添加类WindowsThumb ...

  3. 使用sklearn构建含有标量属性的决策树

    网络上使用sklearn生成决策树的资料很多,这里主要说明遇见标量数据的处理. 经查验参考资料,sklearn并非使用了课上以及书上讲的ID3算法,而是选择了CART,该算法生成二叉树:scikit- ...

  4. 修复VirtualBox "This kernel requires the following features not present on the CPU: pae Unable to boot – please use a kernel appropriate for your CPU"(安装深度Linux的时候就需要)

    异常处理汇总-开发工具  http://www.cnblogs.com/dunitian/p/4522988.html 修复VirtualBox "This kernel requires ...

  5. Windows下配置Redis,并修改密码

    原文:Windows下配置Redis,并修改密码 Windows下配置Redis,并修改密码 下载 Redis Windows版本的GitHub链接,直接下载zip文件解压到指定文件夹下或者下载msi ...

  6. ORA-09925: Unable to create audit trail file

    当我修改ORACLE_SID为新的SID,想进行数据库还原时,用sqlplus报如下错误 [oracle@dbtest ~]$ sqlplus / as sysdba SQL Production : ...

  7. UWP-MSDN文档分类

    原文:UWP-MSDN文档分类 UWP学习目录整理 0x00 可以忽略的废话 10月6号靠着半听半猜和文字直播的补充看完了微软的秋季新品发布会,信仰充值成功,对UWP的开发十分感兴趣,打算后面找时间学 ...

  8. GitLab一键式安装bitnami 专题

    git lab developer角色不能提交到master分支的问题 错误提示: git -c diff.mnemonicprefix=false -c core.quotepath=false p ...

  9. Delphi获得一个进程的主窗体(GetWindow(AHandle, GW_OWNER)等于0的窗体才是主窗体,并且要IsWindowVisible排除Application窗口)

    type  TMainWindow = packed record    ProcessID: THandle;    MainWindow: THandle;  end;  PMainWindow  ...

  10. VS2010使用c++、gSOAP创建WebService 图文教程

    VS2010使用c++.gSOAP创建的WebService 图文教程 环境 操作系统:Windows 7gsoap版本:2.8.32C++编译器/开发环境:Visual Studio 2010 gS ...