一、准备工作

先来一段伪代码,首先你能看懂么?

SELECT DISTINCT <select_list>
FROM <left_table>
<join_type> JOIN <right_table>
ON <join_condition>
WHERE <where_condition>
GROUP BY <group_by_list>
HAVING <having_condition>
ORDER BY <order_by_condition>
LIMIT <limit_number>

继续做以下的前期准备工作:

新建一个测试数据库TestDB;

create database TestDB;

创建测试表table1和table2;

 CREATE TABLE table1
(
customer_id VARCHAR(10) NOT NULL,
city VARCHAR(10) NOT NULL,
PRIMARY KEY(customer_id)
)ENGINE=INNODB DEFAULT CHARSET=UTF8; CREATE TABLE table2
(
order_id INT NOT NULL auto_increment,
customer_id VARCHAR(10),
PRIMARY KEY(order_id)
)ENGINE=INNODB DEFAULT CHARSET=UTF8;

插入测试数据;

 INSERT INTO table1(customer_id,city) VALUES('163','hangzhou');
INSERT INTO table1(customer_id,city) VALUES('9you','shanghai');
INSERT INTO table1(customer_id,city) VALUES('tx','hangzhou');
INSERT INTO table1(customer_id,city) VALUES('baidu','hangzhou'); INSERT INTO table2(customer_id) VALUES('163');
INSERT INTO table2(customer_id) VALUES('163');
INSERT INTO table2(customer_id) VALUES('9you');
INSERT INTO table2(customer_id) VALUES('9you');
INSERT INTO table2(customer_id) VALUES('9you');
INSERT INTO table2(customer_id) VALUES('tx');
INSERT INTO table2(customer_id) VALUES(NULL);

准备工作做完以后,table1和table2看起来应该像下面这样:

	 mysql> select * from table1;
+-------------+----------+
| customer_id | city |
+-------------+----------+
| 163 | hangzhou |
| 9you | shanghai |
| baidu | hangzhou |
| tx | hangzhou |
+-------------+----------+
4 rows in set (0.00 sec)
 mysql> select * from table2;
+----------+-------------+
| order_id | customer_id |
+----------+-------------+
| 1 | 163 |
| 2 | 163 |
| 3 | 9you |
| 4 | 9you |
| 5 | 9you |
| 6 | tx |
| 7 | NULL |
+----------+-------------+
7 rows in set (0.00 sec)

准备SQL逻辑查询测试语句

	 SELECT a.customer_id, COUNT(b.order_id) as total_orders
FROM table1 AS a
LEFT JOIN table2 AS b
ON a.customer_id = b.customer_id
WHERE a.city = 'hangzhou'
GROUP BY a.customer_id
HAVING count(b.order_id) < 2
ORDER BY total_orders DESC;

使用上述SQL查询语句来获得来自杭州,并且订单数少于2的客户。

二、SQL逻辑查询语句执行顺序

还记得上面给出的那一长串的SQL逻辑查询规则么?那么,到底哪个先执行,哪个后执行呢?现在,我先给出一个查询语句的执行顺序:

	(7) SELECT /* 处理SELECT列表,产生 VT7 */
(8) DISTINCT <select_list> /* 将重复的行从 VT7 中删除,产品 VT8 */
(1) FROM <left_table> /* 对FROM子句中的表执行笛卡尔积(交叉联接),生成虚拟表 VT1。 */
(3) <join_type> JOIN <right_table> /* 如果指定了OUTER JOIN(相对于CROSS JOIN或INNER JOIN),
保留表中未找到匹配的行将作为外部行添加到 VT2,生成 VT3。
如果FROM子句包含两个以上的表,
则对上一个联接生成的结果表和下一个表重复执行步骤1到步骤3,
直到处理完所有的表位置。 */
(2) ON <join_condition>/* 对 VT1 应用 ON 筛选器,只有那些使为真才被插入到 VT2。 */
(4) WHERE <where_condition>/* 对 VT3 应用 WHERE 筛选器,只有使为true的行才插入VT4。 */
(5) GROUP BY <group_by_list> /* 按 GROUP BY子句中的列列表对 VT4 中的行进行分组,生成 VT5 */
(6) HAVING <having_condition> /* 对 VT5 应用 HAVING 筛选器,只有使为true的组插入到 VT6 */
(9) ORDER BY <order_by_condition> /* 将 VT8 中的行按 ORDER BY子句中的列列表顺序,生成一个游标(VC10),
生成表TV11,并返回给调用者。 */
(10)LIMIT <limit_number>

Oracle SQL语句执行顺序

	(8)SELECT (9)DISTINCT  (11)<Top Num> <select list>
(1)FROM [left_table]
(3)<join_type> JOIN <right_table>
(2)ON <join_condition>
(4)WHERE <where_condition>
(5)GROUP BY <group_by_list>
(6)WITH <CUBE | RollUP>
(7)HAVING <having_condition>
(10)ORDER BY <order_by_list>

以上每个步骤都会产生一个虚拟表,该虚拟表被用作下一个步骤的输入。这些虚拟表对调用者(客户端应用程序或者外部查询)不可用。只有最后一步生成的表才会会给调用者。如果没有在查询中指定某一个子句,将跳过相应的步骤。

逻辑查询处理阶段简介:

  • FROM:对 FROM 子句中的前两个表执行笛卡尔积(Cartesian product)(交叉联接),生成虚拟表VT1

  • ON:对VT1应用ON筛选器。只有那些使<join_condition>为真的行才被插入VT2。

  • OUTER(JOIN):如 果指定了OUTER JOIN(相对于CROSS JOIN 或(INNER JOIN),保留表(preserved table:左外部联接把左表标记为保留表,右外部联接把右表标记为保留表,完全外部联接把两个表都标记为保留表)中未找到匹配的行将作为外部行添加到 VT2,生成VT3.如果FROM子句包含两个以上的表,则对上一个联接生成的结果表和下一个表重复执行步骤1到步骤3,直到处理完所有的表为止。

  • WHERE:对VT3应用WHERE筛选器。只有使<where_condition>为true的行才被插入VT4.

  • GROUP BY:按GROUP BY子句中的列列表对VT4中的行分组,生成VT5.

  • CUBE|ROLLUP:把超组(Suppergroups)插入VT5,生成VT6.

  • HAVING:对VT6应用HAVING筛选器。只有使<having_condition>为 true 的组才会被插入VT7.

  • SELECT:处理SELECT列表,产生VT8.

  • DISTINCT:将重复的行从VT8中移除,产生VT9.

  • ORDER BY:将VT9中的行按RDER BY 子句中的列列表排序,生成游标(VC10).

  • TOP:从VC10的开始处选择指定数量或比例的行,生成表VT11,并返回调用者。

注:步骤10,按ORDER BY子句中的列列表排序上步返回的行,返回游标VC10.这一步是第一步也是唯一 一步可以使用SELECT列表中的列别名的步骤。这一步不同于其它步骤的 是,它不返回有效的表,而是返回一个游标。SQL是基于集合理论的。集合不会预先对它的行排序,它只是成员的逻辑集合,成员的顺序无关紧要。对表进行排序 的查询可以返回一个对象,包含按特定物理顺序组织的行。ANSI把这种对象称为游标。理解这一步是正确理解SQL的基础。

因为这一步不返回表(而是返回游标),使用了ORDER BY子句的查询不能用作表表达式。表表达式包括:视图、内联表值函数、子查询、派生表和共用表达式。它的结果必须返回给期望得到物理记录的客户端应用程序。例如,下面的派生表查询无效,并产生一个错误:

	select *
from(select orderid,customerid from orders order by orderid) as d

下面的视图也会产生错误

	create view my_view
as
select *
from orders
order by orderid

在 SQL 中,表表达式中不允许使用带有 ORDER BY 子句的查询,而在T—SQL中却有一个例外(应用TOP选项)。

所以要记住,不要为表中的行假设任何特定的顺序。换句话说,除非你确定要有序行,否则不要指定 ORDER BY 子句。排序是需要成本的,SQL Server需要执行有序索引扫描或使用排序运行符。

以上就是一条sql的执行过程,同时我们在书写查询sql的时候应当遵守以下顺序。

	SELECT XXX FROM XXX WHERE XXX GROUP BY XXX HAVING XXX ORDER BY XXX LIMIT XXX;

上面标出了各条查询规则的执行先后顺序,那么各条查询语句是如何执行的呢?

(1)执行FROM语句

在这些 SQL 语句的执行过程中,都会产生一个虚拟表,用来保存 SQL 语句的执行结果(这是重点),我现在就来跟踪这个虚拟表的变化,得到最终的查询结果的过程,来分析整个 SQL 逻辑查询的执行顺序和过程。

第一步,执行FROM语句。我们首先需要知道最开始从哪个表开始的,这就是FROM告诉我们的。现在有了 <left_table> 和 <right_table> 两个表,我们到底从哪个表开始,还是从两个表进行某种联系以后再开始呢?它们之间如何产生联系呢?——笛卡尔积

关于什么是笛卡尔积,请自行 Google 补脑。经过 FROM 语句对两个表执行笛卡尔积,会得到一个虚拟表,暂且叫VT1(vitual table 1),内容如下:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 9you | shanghai | 1 | 163 |
| baidu | hangzhou | 1 | 163 |
| tx | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 2 | 163 |
| baidu | hangzhou | 2 | 163 |
| tx | hangzhou | 2 | 163 |
| 163 | hangzhou | 3 | 9you |
| 9you | shanghai | 3 | 9you |
| baidu | hangzhou | 3 | 9you |
| tx | hangzhou | 3 | 9you |
| 163 | hangzhou | 4 | 9you |
| 9you | shanghai | 4 | 9you |
| baidu | hangzhou | 4 | 9you |
| tx | hangzhou | 4 | 9you |
| 163 | hangzhou | 5 | 9you |
| 9you | shanghai | 5 | 9you |
| baidu | hangzhou | 5 | 9you |
| tx | hangzhou | 5 | 9you |
| 163 | hangzhou | 6 | tx |
| 9you | shanghai | 6 | tx |
| baidu | hangzhou | 6 | tx |
| tx | hangzhou | 6 | tx |
| 163 | hangzhou | 7 | NULL |
| 9you | shanghai | 7 | NULL |
| baidu | hangzhou | 7 | NULL |
| tx | hangzhou | 7 | NULL |
+-------------+----------+----------+-------------+

总共有28(table1的记录条数 * table2的记录条数)条记录。这就是VT1的结果,接下来的操作就在VT1的基础上进行。

(2)执行ON过滤

执行完笛卡尔积以后,接着就进行ON a.customer_id = b.customer_id条件过滤,根据ON中指定的条件,去掉那些不符合条件的数据,得到VT2表,内容如下:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 3 | 9you |
| 9you | shanghai | 4 | 9you |
| 9you | shanghai | 5 | 9you |
| tx | hangzhou | 6 | tx |
+-------------+----------+----------+-------------+

VT2就是经过ON条件筛选以后得到的有用数据,而接下来的操作将在VT2的基础上继续进行。

(3) JOIN 添加外部行

这一步只有在连接类型为OUTER JOIN时才发生,如LEFT OUTER JOIN、RIGHT OUTER JOIN和FULL OUTER JOIN。在大多数的时候,我们都是会省略掉OUTER关键字的,但OUTER表示的就是外部行的概念。

下面从网上找到一张很形象的关于‘SQL JOINS'的解释图

LEFT OUTER JOIN把左表记为保留表,得到的结果为:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 3 | 9you |
| 9you | shanghai | 4 | 9you |
| 9you | shanghai | 5 | 9you |
| tx | hangzhou | 6 | tx |
| baidu | hangzhou | NULL | NULL |
+-------------+----------+----------+-------------+

RIGHT OUTER JOIN把右表记为保留表,得到的结果为:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 3 | 9you |
| 9you | shanghai | 4 | 9you |
| 9you | shanghai | 5 | 9you |
| tx | hangzhou | 6 | tx |
| NULL | NULL | 7 | NULL |
+-------------+----------+----------+-------------+

FULL OUTER JOIN把左右表都作为保留表,得到的结果为:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 3 | 9you |
| 9you | shanghai | 4 | 9you |
| 9you | shanghai | 5 | 9you |
| tx | hangzhou | 6 | tx |
| baidu | hangzhou | NULL | NULL |
| NULL | NULL | 7 | NULL |
+-------------+----------+----------+-------------+

添加外部行的工作就是在VT2表的基础上添加保留表中被过滤条件过滤掉的数据,非保留表中的数据被赋予NULL值,最后生成虚拟表VT3。

由于我在准备的测试SQL查询逻辑语句中使用的是LEFT JOIN,过滤掉了以下这条数据:

| baidu       | hangzhou |     NULL | NULL        |

现在就把这条数据添加到VT2表中,得到的VT3表如下:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 3 | 9you |
| 9you | shanghai | 4 | 9you |
| 9you | shanghai | 5 | 9you |
| tx | hangzhou | 6 | tx |
| baidu | hangzhou | NULL | NULL |
+-------------+----------+----------+-------------+

接下来的操作都会在该VT3表上进行。

(4)执行WHERE过滤

对添加外部行得到的VT3进行WHERE过滤,只有符合<where_condition>的记录才会输出到虚拟表VT4中。当我们执行WHERE a.city = 'hangzhou'的时候,就会得到以下内容,并存在虚拟表VT4中:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| tx | hangzhou | 6 | tx |
| baidu | hangzhou | NULL | NULL |
+-------------+----------+----------+-------------+

但是在使用WHERE子句时,需要注意以下两点:

由于数据还没有分组,因此现在还不能在WHERE过滤器中使用where_condition=MIN(col)这类对分组统计的过滤;

由于还没有进行列的选取操作,因此在SELECT中使用列的别名也是不被允许的,

如:SELECT city as c FROM t WHERE c='shanghai';是不允许出现的。

(5) 执行 GROUP BY 分组

GROU BY子句主要是对使用WHERE子句得到的虚拟表进行分组操作。我们执行测试语句中的GROUP BY a.customer_id,就会得到以下内容:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| baidu | hangzhou | NULL | NULL |
| tx | hangzhou | 6 | tx |
+-------------+----------+----------+-------------+

得到的内容会存入虚拟表VT5中,此时,我们就得到了一个VT5虚拟表,接下来的操作都会在该表上完成。

(6) 执行HAVING过滤

HAVING子句主要和GROUP BY子句配合使用,对分组得到的VT5虚拟表进行条件过滤。当我执行测试语句中的HAVING count(b.order_id) < 2时,将得到以下内容:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| baidu | hangzhou | NULL | NULL |
| tx | hangzhou | 6 | tx |
+-------------+----------+----------+-------------+

这就是虚拟表VT6。

(7) SELECT列表

现在才会执行到SELECT子句,不要以为SELECT子句被写在第一行,就是第一个被执行的。

我们执行测试语句中的SELECT a.customer_id, COUNT(b.order_id) as total_orders,从虚拟表VT6中选择出我们需要的内容。我们将得到以下内容:

+-------------+--------------+
| customer_id | total_orders |
+-------------+--------------+
| baidu | 0 |
| tx | 1 |
+-------------+--------------+

不,还没有完,这只是虚拟表VT7。

(8)执行 DISTINCT 子句

如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表 VT7 是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。

由于我的测试SQL语句中并没有使用 DISTINCT,所以,在该查询中,这一步不会生成一个虚拟表。

(9)执行 ORDER BY 子句

对虚拟表中的内容按照指定的列进行排序,然后返回一个新的虚拟表,我们执行测试SQL语句中的ORDER BY total_orders DESC,就会得到以下内容:

+-------------+--------------+
| customer_id | total_orders |
+-------------+--------------+
| tx | 1 |
| baidu | 0 |
+-------------+--------------+

可以看到这是对 total_orders 列进行降序排列的。上述结果会存储在VT8中。

(10) 执行 LIMIT 子句

LIMIT子句从上一步得到的VT8虚拟表中选出从指定位置开始的指定行数据。对于没有应用ORDER BYLIMIT子句,得到的结果同样是无序的,所以,很多时候,我们都会看到LIMIT子句会和ORDER BY子句一起使用。

MySQL数据库的LIMIT支持如下形式的选择:

LIMIT n, m

表示从第n条记录开始选择m条记录。而很多开发人员喜欢使用该语句来解决分页问题。对于小数据,使用LIMIT子句没有任何问题,当数据量非常大的时候,使用LIMIT n, m是非常低效的。因为LIMIT的机制是每次都是从头开始扫描,如果需要从第60万行开始,读取3条数据,就需要先扫描定位到60万行,然后再进行读取,而扫描的过程是一个非常低效的过程。所以,对于大数据处理时,是非常有必要在应用层建立一定的缓存机制(貌似现在的大数据处理,都有缓存哦)。各位,请期待我的缓存方面的文章哦。

至此SQL的解析之旅就结束了,上图总结一下:

三、SQL书写习惯

了解了 SQL 执行顺序,那么我们就接下来进一步养成日常 sql好习惯,也就是在实现功能同时有考虑性能的思想,数据库是能进行集合运算的工具,我们应该尽量的利用这个工具,所谓集合运算实际就是批量运算,就是尽量减少在客户端进行大数据量的循环操作,而用SQL语句或者存储过程代替。

1.只返回需要的数据

返回数据到客户端至少需要数据库提取数据、网络传输数据、客户端接收数据以及客户端处理数据等环节。

如果返回不需要的数据,就会增加服务器、网络和客户端的无效劳动,其害处是显而易见的,避免这类事件需要注意:

(1)横向来看:

不要写SELECT * 的语句,而是选择你需要的字段。

当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上。这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误。

如有表table1(ID,col1)和table2 (ID,col2)
Select A.ID, A.col1, B.col2
-- Select A.ID, col1, col2 –不要这么写,不利于将来程序扩展
from table1 A inner join table2 B on A.ID=B.ID Where …

(2) 纵向来看

合理写 WHERE 子句,不要写没有 WHERE 的 SQL 语句。SELECT TOP N * --没有WHERE条件的用此替代

尽量少做重复的工作。控制同一语句的多次执行,特别是一些基础数据的多次执行是很多程序员很少注意的。

减少多次的数据转换,也许需要数据转换是设计的问题,但是减少次数是程序员可以做到的。

杜绝不必要的子查询和连接表,子查询在执行计划一般解释成外连接,多余的连接表带来额外的开销。

合并对同一表同一条件的多次 UPDATE,比如:

UPDATE EMPLOYEE SET FNAME='HAIWER'
WHERE EMP_ID=' VPA30890F' UPDATE EMPLOYEE SET LNAME='YANG'
WHERE EMP_ID=' VPA30890F'
-- 这两个语句应该合并成以下一个语句
UPDATE EMPLOYEE SET FNAME='HAIWER',LNAME='YANG' WHERE EMP_ID=' VPA30890F'
UPDATE操作不要拆成DELETE操作+INSERT操作的形式,虽然功能相同,但是性能差别是很大的。

2.注意 临时表表变量 的用法

在复杂系统中,临时表和表变量很难避免,关于临时表和表变量的用法,需要注意:

如果语句很复杂,连接太多,可以考虑用临时表和表变量分步完成。

如果需要多次用到一个大表的同一部分数据,考虑用临时表和表变量暂存这部分数据。

如果需要综合多个表的数据,形成一个结果,可以考虑用临时表和表变量分步汇总这多个表的数据。

其他情况下,应该控制临时表和表变量的使用。

关于临时表和表变量的选择,很多说法是表变量在内存,速度快,应该首选表变量,

但是在实际使用中发现,主要考虑需要放在临时表的数据量,在数据量较多的情况下,临时表的速度反而更快。执行时间段与预计执行时间(多长)。

关于临时表产生使用SELECT INTOCREATE TABLE + INSERT INTO 的选择。

一般情况下,SELECT INTO会比CREATE TABLE + INSERT INTO的方法快很多,

但是SELECT INTO会锁定TEMPDB的系统表SYSOBJECTS、SYSINDEXES、SYSCOLUMNS

在多用户并发环境下,容易阻塞其他进程,

所以我的建议是,在并发系统中,尽量使用CREATE TABLE + INSERT INTO,而大数据量的单个语句使用中,使用SELECT INTO。

3.子查询的用法

子查询是一个 SELECT 查询,它嵌套在 SELECT、INSERT、UPDATE、DELETE 语句或其它子查询中。

任何允许使用表达式的地方都可以使用子查询,子查询可以使我们的编程灵活多样,可以用来实现一些特殊的功能。

但是在性能上,往往一个不合适的子查询用法会形成一个性能瓶颈。

如果子查询的条件中使用了其外层的表的字段,这种子查询就叫作相关子查询。

相关子查询可以用IN、NOT IN、EXISTS、NOT EXISTS引入。

关于相关子查询,应该注意:

1. NOT IN、NOT EXISTS的相关子查询可以改用LEFT JOIN代替写法。

比如:
SELECT PUB_NAME FROM PUBLISHERS WHERE PUB_ID NOT IN (SELECT PUB_ID FROM TITLES WHERE TYPE = 'BUSINESS')
可以改写成:
SELECT A.PUB_NAME FROM PUBLISHERS A LEFT JOIN TITLES B ON B.TYPE = 'BUSINESS' AND A.PUB_ID=B. PUB_ID WHERE B.PUB_ID IS NULL
又比如:
SELECT TITLE FROM TITLES
WHERE NOT EXISTS
(SELECT TITLE_ID FROM SALES
WHERE TITLE_ID = TITLES.TITLE_ID)
可以改写成:
SELECT TITLE
FROM TITLES LEFT JOIN SALES
ON SALES.TITLE_ID = TITLES.TITLE_ID
WHERE SALES.TITLE_ID IS NULL 2. 如果保证子查询没有重复 ,IN、EXISTS的相关子查询可以用INNER JOIN 代替。 比如:
SELECT PUB_NAME
FROM PUBLISHERS
WHERE PUB_ID IN
(SELECT PUB_ID
FROM TITLES
WHERE TYPE = 'BUSINESS')
可以改写成:
SELECT A.PUB_NAME --SELECT DISTINCT A.PUB_NAME
FROM PUBLISHERS A INNER JOIN TITLES B
ON B.TYPE = 'BUSINESS' AND
A.PUB_ID=B. PUB_ID 3. IN的相关子查询用EXISTS代替 比如
SELECT PUB_NAME FROM PUBLISHERS
WHERE PUB_ID IN
(SELECT PUB_ID FROM TITLES WHERE TYPE = 'BUSINESS')
可以用下面语句代替:
SELECT PUB_NAME FROM PUBLISHERS WHERE EXISTS
(SELECT 1 FROM TITLES WHERE TYPE = 'BUSINESS' AND
PUB_ID= PUBLISHERS.PUB_ID) 4. 不要用COUNT(*)的子查询判断是否存在记录,最好用LEFT JOIN或者EXISTS 比如有人写这样的语句:
SELECT JOB_DESC FROM JOBS
WHERE (SELECT COUNT(*) FROM EMPLOYEE WHERE JOB_ID=JOBS.JOB_ID)=0
应该写成:
SELECT JOBS.JOB_DESC FROM JOBS LEFT JOIN EMPLOYEE
ON EMPLOYEE.JOB_ID=JOBS.JOB_ID
WHERE EMPLOYEE.EMP_ID IS NULL
还有
SELECT JOB_DESC FROM JOBS
WHERE (SELECT COUNT(*) FROM EMPLOYEE WHERE JOB_ID=JOBS.JOB_ID)<>0
应该写成:
SELECT JOB_DESC FROM JOBS
WHERE EXISTS (SELECT 1 FROM EMPLOYEE WHERE JOB_ID=JOBS.JOB_ID)

4.尽量使用索引

建立索引后,并不是每个查询都会使用索引,在使用索引的情况下,索引的使用效率也会有很大的差别。只要我们在查询语句中没有强制指定索引,索引的选择和使用方法是SQLSERVER的优化器自动作的选择,而它选择的根据是查询语句的条件以及相关表的统计信息,这就要求我们在写SQL语句的时候尽量使得优化器可以使用索引。为了使得优化器能高效使用索引,写语句的时候应该注意:

不要对索引字段进行运算,而要想办法做变换

    SELECT ID FROM T WHERE NUM/2=100
应改为:
SELECT ID FROM T WHERE NUM=100*2
SELECT ID FROM T WHERE NUM/2=NUM1
如果NUM有索引应改为:
SELECT ID FROM T WHERE NUM=NUM1*2
如果NUM1有索引则不应该改。
发现过这样的语句:
SELECT 年,月,金额 FROM 结余表 WHERE 100*年+月=2010*100+10
应该改为:
SELECT 年,月,金额 FROM 结余表 WHERE 年=2010 AND月=10

不要对索引字段进行格式转换

    日期字段的例子:
WHERE CONVERT(VARCHAR(10), 日期字段,120)='2010-07-15'
应该改为
WHERE日期字段〉='2010-07-15' AND 日期字段<'2010-07-16'
ISNULL转换的例子:
WHERE ISNULL(字段,'')<>''应改为:WHERE字段<>''
WHERE ISNULL(字段,'')=''不应修改
WHERE ISNULL(字段,'F') ='T'应改为: WHERE字段='T'
WHERE ISNULL(字段,'F')<>'T'不应修改

不要对索引字段使用函数

    WHERE LEFT(NAME, 3)='ABC' 或者WHERE SUBSTRING(NAME,1, 3)='ABC'
应改为: WHERE NAME LIKE 'ABC%'
日期查询的例子:
WHERE DATEDIFF(DAY, 日期,'2010-06-30')=0
应改为:WHERE 日期>='2010-06-30' AND 日期 <'2010-07-01'
WHERE DATEDIFF(DAY, 日期,'2010-06-30')>0
应改为:WHERE 日期 <'2010-06-30'
WHERE DATEDIFF(DAY, 日期,'2010-06-30')>=0
应改为:WHERE 日期 <'2010-07-01'
WHERE DATEDIFF(DAY, 日期,'2010-06-30')<0
应改为:WHERE 日期>='2010-07-01'
WHERE DATEDIFF(DAY, 日期,'2010-06-30')<=0
应改为:WHERE 日期>='2010-06-30'

不要对索引字段进行多字段连接

    比如:
WHERE FAME+ '. '+LNAME='HAIWEI.YANG'
应改为:
WHERE FNAME='HAIWEI' AND LNAME='YANG'

5.多表连接的连接条件

多表连接的连接条件对索引的选择有着重要的意义,所以我们在写连接条件的时候需要特别注意。

多表连接的时候,连接条件必须写全,宁可重复,不要缺漏。

连接条件尽量使用聚集索引

注意ON、WHERE和HAVING部分条件的区别

ON是最先执行,WHERE次之,HAVING最后。因为ON是先把不符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,

WHERE也应该比 HAVING快点的,因为它过滤数据后才进行SUM,在两个表联接时才用ON的,所以在一个表的时候,就剩下WHEREHAVING比较了

6.考虑联接优先顺序

INNER JOIN LEFT JOIN (注:RIGHT JOIN 用 LEFT JOIN 替代) CROSS JOIN

其它注意和了解的地方有

在IN后面值的列表中,将出现最频繁的值放在最前面,出现得最少的放在最后面,减少判断的次数

注意UNIONUNION ALL的区别。--允许重复数据用UNION ALL

注意使用DISTINCT,在没有必要时不要用

7.truncate table与 delete 区别

相同点:

1.truncate和不带where子句的delete、以及drop都会删除表内的数据。
2.drop、truncate都是DDL语句(数据定义语言),执行后会自动提交。

不同点:

1. truncate 和 delete 只删除数据不删除表的结构(定义)
drop 语句将删除表的结构被依赖的约束(constrain)、触发器(trigger)、索引(index);依赖于该表的存储过程/函数将保留,但是变为 invalid 状态。 2. delete 语句是数据库操作语言(dml),这个操作会放到 rollback segement 中,事务提交之后才生效;如果有相应的 trigger,执行的时候将被触发。
truncate、drop 是数据库定义语言(ddl),操作立即生效,原数据不放到 rollback segment 中,不能回滚,操作不触发 trigger。 3.delete 语句不影响表所占用的 extent,高水线(high watermark)保持原位置不动
drop 语句将表所占用的空间全部释放。
truncate 语句缺省情况下见空间释放到 minextents个 extent,除非使用reuse storage;truncate 会将高水线复位(回到最开始)。 4.速度,一般来说: drop> truncate > delete 5.安全性:小心使用 drop 和 truncate,尤其没有备份的时候.否则哭都来不及
使用上,想删除部分数据行用 delete,注意带上where子句. 回滚段要足够大.
想删除表,当然用 drop
想保留表而将所有数据删除,如果和事务无关,用truncate即可。如果和事务有关,或者想触发trigger,还是用delete。
如果是整理表内部的碎片,可以用truncate跟上reuse stroage,再重新导入/插入数据。 6.delete是DML语句,不会自动提交。drop/truncate都是DDL语句,执行后会自动提交。 7、TRUNCATE TABLE 在功能上与不带 WHERE 子句的 DELETE
语句相同:二者均删除表中的全部行。但 TRUNCATE TABLE 比 DELETE 速度快,且使用的系统和事务日志资源少。
DELETE 语句每次删除一行,并在事务日志中为所删除的每行记录一项。
TRUNCATE TABLE 通过释放存储表数据所用的数据页来删除数据,并且只在事务日志中记录页的释放。 8、TRUNCATE TABLE 删除表中的所有行,但表结构及其列、约束、索引等保持不变。新行标识所用的计数值重置为该列的种子。如果想保留标识计数值,请改用 DELETE。如果要删除表定义及其数据,请使用 DROP TABLE 语句。 9、对于由 FOREIGN KEY 约束引用的表,不能使用 TRUNCATE TABLE,而应使用不带 WHERE 子句的 DELETE 语句。由于 TRUNCATE TABLE 不记录在日志中,所以它不能激活触发器。 10、TRUNCATE TABLE 不能用于参与了索引视图的表。

sql语句执行步骤详解的更多相关文章

  1. SQL语句执行过程详解

    一.SQL语句执行原理: 第一步:客户端把语句发给服务器端执行 当我们在客户端执行select语句时, 客户端会把这条SQL语句发送给服务器端,让服务器端的进程来处理这语句.也就是说,Oracle客户 ...

  2. MySQL 语句执行过程详解

    MySQL 原理篇 MySQL 索引机制 MySQL 体系结构及存储引擎 MySQL 语句执行过程详解 MySQL 执行计划详解 MySQL InnoDB 缓冲池 MySQL InnoDB 事务 My ...

  3. Spark SQL底层执行流程详解

    本文目录 一.Apache Spark 二.Spark SQL发展历程 三.Spark SQL底层执行原理 四.Catalyst 的两大优化 一.Apache Spark Apache Spark是用 ...

  4. Oracle SQL语句执行步骤

    转自:http://www.cnblogs.com/quanweiru/archive/2012/11/09/2762345.html Oracle中SQL语句执行过程中,Oracle内部解析原理如下 ...

  5. MyBatis的SQL语句映射文件详解

    SQL 映射XML 文件是所有sql语句放置的地方.需要定义一个workspace,一般定义为对应的接口类的路径.写好SQL语句映射文件后,需要在MyBAtis配置文件mappers标签中引用 < ...

  6. Sql server 执行计划详解

    序言 本篇主要目的有二: 1.看懂t-sql的执行计划,明白执行计划中的一些常识. 2.能够分析执行计划,找到优化sql性能的思路或方案. 如果你对sql查询优化的理解或常识不是很深入,那么推荐几骗博 ...

  7. Java数据持久层框架 MyBatis之API学习九(SQL语句构建器详解)

    对于MyBatis的学习而言,最好去MyBatis的官方文档:http://www.mybatis.org/mybatis-3/zh/index.html 对于语言的学习而言,马上上手去编程,多多练习 ...

  8. [转]MySQL查询语句执行过程详解

    Mysql查询语句执行原理 数据库查询语句如何执行?语法分析:首先进行语法分析,对使用sql表示的查询进行语法分析,生成查询语法分析树.语义检查:检查sql中所涉及的对象以及是否在数据库中存在,用户是 ...

  9. 一条 sql 的执行过程详解

    写操作执行过程 如果这条sql是写操作(insert.update.delete),那么大致的过程如下,其中引擎层是属于 InnoDB 存储引擎的,因为InnoDB 是默认的存储引擎,也是主流的,所以 ...

随机推荐

  1. winform事件

    C#winform最简单的方法就是拖控件,然后双击控件生成默认的事件.再此双击生成的只是事件的方法,事件的订阅在form.desigener.cs中,如 this.DBSelectBTN.Click ...

  2. 如何在Spring Boot项目中巧妙利用策略模式干掉if else!

    直入主题 我们都知道,设计模式(Design Pattern)是前辈们对代码开发经验的总结,是解决特定问题的一系列套路.它不是语法规定,而是一套用来提高代码可复用性.可维护性.可读性.稳健性以及安全性 ...

  3. 构建企业级数据湖?Azure Data Lake Storage Gen2实战体验(下)

    相较传统的重量级OLAP数据仓库,“数据湖”以其数据体量大.综合成本低.支持非结构化数据.查询灵活多变等特点,受到越来越多企业的青睐,逐渐成为了现代数据平台的核心和架构范式. 作为微软Azure上最新 ...

  4. 使用Selenium爬取淘宝商品

    import pymongo from selenium import webdriver from selenium.common.exceptions import TimeoutExceptio ...

  5. Python中使用字典的几个小技巧

    1 解包 所谓解包,就是将字典通过 ** 操作符转为 Key=Value 的形式,这种形式可以直接传给函数作为关键字参数. 说说适用的几种情况. 1.1 搜索拼接条件 当应用中使用类似 SQLAlch ...

  6. [2018-01-08] Python强化周的第一天

    Python强化周的第一天 学生管理系统-制作(成绩类)模块 class Score: lesson_name = "python" # 课程名 score = 0 # 分数 # ...

  7. Pyinstaller打包scrapy

    环境 Windows7 Python3.65 scrapy1.74 PyInstaller3.5 创建打包脚本 在与scrapy.cfg同路径创建start.py # -*- coding: utf- ...

  8. 五角场之殇。曾与张江、漕河泾、紫竹齐名。如今,上海四大IT科技园是否还在?

    五角场.张江.漕河泾.紫竹并称为上海四大 IT 科技园.张江与漕河泾有着最多的国内互联网公司,以及部分的外企.随着国内互联网公司的崛起,张江与漕河泾名声远扬,不仅在上海IT圈人尽皆知,在全国范围也是小 ...

  9. 手机信号G、E、O、3G代表什么意思?

    G指GPRS,是2.5G网络,属于GSM网络,也就是说这项技术位于第二代(2G)和第三代(3G)移动通讯技术之间,GPRS的传输速率可提升至56甚至114Kbps,已经将2017年确定为关闭GSM网络 ...

  10. LeetCode刷题总结-数组篇(下)

    本期讲O(n)类型问题,共14题.3道简单题,9道中等题,2道困难题.数组篇共归纳总结了50题,本篇是数组篇的最后一篇.其他三个篇章可参考: LeetCode刷题总结-数组篇(上),子数组问题(共17 ...