每个点的度数=prufer序列中的出现次数+1,所以即每次选一些位置放上某个点,答案即一堆组合数相乘。记一下每个因子的贡献分解一下质因数高精度乘起来即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,a[N],f[N],g[N],ans[N<<2];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1005.in","r",stdin);
freopen("bzoj1005.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=1;i<=n;i++) a[i]=read()-1;
for (int i=1;i<=n;i++) if (a[i]==-1) {cout<<0;return 0;}
int sum=0;for (int i=1;i<=n;i++) if (a[i]==0) sum+=a[i];
if (sum>n-2){cout<<0;return 0;}sum=n-2;int cnt=0;
for (int i=1;i<=n;i++)
if (a[i]>=0)
{
for (int j=sum-a[i]+1;j<=sum;j++) f[j]++;
for (int j=1;j<=a[i];j++) f[j]--;
sum-=a[i];
}
else cnt++;
f[cnt]+=sum;
for (int i=2;i<=n;i++)
{
int x=i;
for (int j=2;j<=x;j++)
while (x%j==0) g[j]+=f[i],x/=j;
if (x>1) g[x]+=f[i];
}
ans[1]=1;int len=1;
for (int i=2;i<=n;i++)
while (g[i]--)
{
for (int j=1;j<=len;j++) ans[j]*=i;
for (int j=1;j<=len;j++)
ans[j+1]+=ans[j]/10,ans[j]%=10;
while (ans[len+1]) len++,ans[len+1]+=ans[len]/10,ans[len]%=10;
}
for (int i=len;i>=1;i--) printf("%d",ans[i]);
return 0;
}

  

BZOJ1005 HNOI2008明明的烦恼(prufer+高精度)的更多相关文章

  1. [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度

    Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...

  2. [BZOJ1005] [HNOI2008] 明明的烦恼 (prufer编码)

    Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...

  3. bzoj1005: [HNOI2008]明明的烦恼 prufer序列

    https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的 ...

  4. bzoj1005: [HNOI2008]明明的烦恼(prufer+高精度)

    1005: [HNOI2008]明明的烦恼 题目:传送门 题解: 毒瘤题啊天~ 其实思考的过程还是比较简单的... 首先当然还是要了解好prufer序列的基本性质啦 那么和1211大体一致,主要还是利 ...

  5. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  6. bzoj1005 [HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3032  Solved: 1209 Description ...

  7. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  8. BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )

    首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...

  9. bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)

    [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5907  Solved: 2305[Submit][Status][Di ...

随机推荐

  1. .NET-记一次架构优化实战与方案-前端优化

    目录 .NET-记一次架构优化实战与方案-梳理篇 .NET-记一次架构优化实战与方案-前端优化 .NET-记一次架构优化实战与方案-底层服务优化 前言 上一篇<.NET-记一次架构优化实战与方案 ...

  2. A direct formulation for sparse PCA using semidefinite programming

    目录 背景 Sparse eigenvectors(单个向量的稀疏化) 初始问题(low-rank的思想?) 等价问题 最小化\(\lambda\) 得到下列问题(易推) 再来一个等价问题 条件放松( ...

  3. A+B大数运算

    基础加法大数运算: [https://vjudge.net/problem/HDU-1002] 题目: 输入两个长度不超过1000的整数求出sum. 思路: 由于数字很大不能直接加,用字符串形式输入, ...

  4. Largest Rectangle in a Histogram HDU - 1506 (单调栈)

    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rec ...

  5. Two distinct points CodeForces - 1108A (签到)

    You are given two segments [l1;r1][l1;r1] and [l2;r2][l2;r2] on the xx-axis. It is guaranteed that l ...

  6. JEECG & JEESite Tomcat集群 Session共享

    多台tomcat服务的session共享 memcached与redis - JEECG开源社区 - CSDN博客https://blog.csdn.net/zhangdaiscott/article ...

  7. Jquery 选择器 特殊字符 转义字符

    1.Jquery   选择器 id包含特殊字符,加双斜线 \\ 例 <input type="text" id="dbo_HouseInfo.HouseResour ...

  8. /dev被异常删除的问题

    今天遇到一个问题,在执行某些操作后,发现经常报“read_urandom: /dev/urandom: open failed: No such file or directory”这个错误.后来查看 ...

  9. Canvas & SVG

    Canvas & SVG https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-dev ...

  10. pip install MySQL-python 失败

    1. EnvironmentError: mysql_config not found原因:/usr/bin/mysql_config没有次文件,要安装libmysqlclient-dev, apt ...