计算所都不相同子串的个数,做法是所有子串的个数减去sigma(height[]).其中height数组的和便是所有相同子串的个数。

注意 N×(N+1)/2会爆int!但是最终答案在int内。所以使用sigma(n-sa[i]+1-height[i])的做法不会wa

 #include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int maxn = 5e4+;
char line[maxn];
int s[maxn];
int sa[maxn],t1[maxn],t2[maxn],c[maxn];
int rank[maxn],height[maxn]; void build_sa(int s[],int n,int m)
{
int i,j,p,*x=t1,*y=t2;
//第一轮基数排序,如果s的最大值很大,可改为快速排序
for(i=;i<m;i++)c[i]=;
for(i=;i<n;i++)c[x[i]=s[i]]++;
for(i=;i<m;i++)c[i]+=c[i-];
for(i=n-;i>=;i--)sa[--c[x[i]]]=i;
for(j=;j<=n;j<<=)
{
p=;
//直接利用sa数组排序第二关键字
for(i=n-j;i<n;i++)y[p++]=i;//后面的j个数第二关键字为空的最小
for(i=;i<n;i++)if(sa[i]>=j)y[p++]=sa[i]-j;
//这样数组y保存的就是按照第二关键字排序的结果
//基数排序第一关键字
for(i=;i<m;i++)c[i]=;
for(i=;i<n;i++)c[x[y[i]]]++;
for(i=;i<m;i++)c[i]+=c[i-];
for(i=n-;i>=;i--)sa[--c[x[y[i]]]]=y[i];
//根据sa和x数组计算新的x数组
swap(x,y);
p=;x[sa[]]=;
for(i=;i<n;i++)
x[sa[i]]=y[sa[i-]]==y[sa[i]] && y[sa[i-]+j]==y[sa[i]+j]?p-:p++;
if(p>=n)break;
m=p;//下次基数排序的最大值
}
}
void getHeight(int s[],int n)
{
int i,j,k=;
for(i=;i<=n;i++)rank[sa[i]]=i;
for(i=;i<n;i++)
{
if(k)k--;
j=sa[rank[i]-];
while(s[i+k]==s[j+k])k++;
height[rank[i]]=k;
}
} int T; int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%s",line);
int N = strlen(line);
for(int i=;i<=N;i++)
s[i] = line[i]; build_sa(s,N+,);
getHeight(s,N); long long len = N;
long long ans = len*(len+)/; for(int i=;i<=N;i++)
{
ans -= height[i];
}
printf("%d\n",ans);
}
}

SPOJ705-New Distinct Substrings-后缀数组的更多相关文章

  1. [spoj694&spoj705]New Distinct Substrings(后缀数组)

    题意:求字符串中不同子串的个数. 解题关键:每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数. 1.总数减去height数组的和即可. 注意这里height中为什么不需 ...

  2. SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数

    题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...

  3. SPOJ - DISUBSTR Distinct Substrings (后缀数组)

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

  4. 【SPOJ – SUBST1】New Distinct Substrings 后缀数组

    New Distinct Substrings 题意 给出T个字符串,问每个字符串有多少个不同的子串. 思路 字符串所有子串,可以看做由所有后缀的前缀组成. 按照后缀排序,遍历后缀,每次新增的前缀就是 ...

  5. SPOJ DISUBSTR Distinct Substrings 后缀数组

    题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...

  6. SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )

    题意 : 对于给出的串,输出其不同长度的子串的种类数 分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀 ...

  7. spoj Distinct Substrings 后缀数组

    给定一个字符串,求不相同的子串的个数. 假如给字符串“ABA";排列的子串可能: A B A AB  BA ABA 共3*(3+1)/2=6种; 后缀数组表示时: A ABA BA 对于A和 ...

  8. spoj 694. Distinct Substrings 后缀数组求不同子串的个数

    题目链接:http://www.spoj.com/problems/DISUBSTR/ 思路: 每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数.如果所有的后缀按照su ...

  9. SPOJ_705_New Distinct Substrings_后缀数组

    SPOJ_705_New Distinct Substrings_后缀数组 题意: 给定一个字符串,求该字符串含有的本质不同的子串数量. 后缀数组的一个小应用. 考虑每个后缀的贡献,如果不要求本质不同 ...

  10. Cogs 1709. [SPOJ705]不同的子串 后缀数组

    题目:http://cojs.tk/cogs/problem/problem.php?pid=1709 1709. [SPOJ705]不同的子串 ★★   输入文件:subst1.in   输出文件: ...

随机推荐

  1. mybatis 多个接口参数的注解使用方式(@Param)

    目录 1 简介 1.1 单参数 1.2 多参数 2 多个接口参数的两种使用方式 2.1 Map 方法(不推荐) 2.1.1 创建接口方法 2.1.2 配置对应的SQL 2.1.3 调用 2.2 @Pa ...

  2. 前后端分离的利器:fiddler的实用功能举例

    # 前后端分离的利器:fiddler的实用功能举例 ##what's fiddler fiddler是一款代理软件,对于前后端分离开发非常重要.可以说,如果前端开发没有用上fiddler或类似软件,那 ...

  3. 协程 IO多路复用

    -----------------------------------------------------------------试试并非受罪,问问并不吃亏.善于发问的人,知识丰富. # # ---- ...

  4. H5 60-浮动元素排序规则

    60-浮动元素排序规则 <!DOCTYPE html><html lang="en"><head> <meta charset=" ...

  5. jmeter压测

    一般压测时间:10-15分钟   这些并发用户一直在请求. 稳定性测试:一周  2天 衡量性能好坏的指标: tps 服务端每秒钟能处理的请求数 rt响应时间 就是你从发出请求到服务器端返回所需的时间. ...

  6. linux之常见错误

    在日常开发中,尤其是在Linux中进行操作的时候,经常会碰到各种各样的错误.记录一下,熟能生巧,慢慢参透linux的奥秘 1) 在安装ssl证书的时候,发生certbot命令无法使用的情况 解决方案: ...

  7. IdentityServer4【Topic】之登陆注册

    Sign-in 登陆注册 为了让标识服务器(identity server)代表用户发出令牌,该用户必须登录到标识服务器. Cookie authentication Cookie认证 身份验证是由来 ...

  8. [转帖]Centos7 yum安装Chrome浏览器

    Centos7 yum安装Chrome浏览器 https://www.cnblogs.com/ianduin/p/8727333.html以及https://blog.csdn.net/libaine ...

  9. Angular 过滤器

    <!DOCTYPE html><html ng-app="myApp"><head lang="en"> <meta ...

  10. ES6/ES2015的一些特性的简单使

    1.一些常用的ES6的特性: let, const, class, extends, super, arrow functions, template string, destructuring, d ...