SPOJ705-New Distinct Substrings-后缀数组
计算所都不相同子串的个数,做法是所有子串的个数减去sigma(height[]).其中height数组的和便是所有相同子串的个数。
注意 N×(N+1)/2会爆int!但是最终答案在int内。所以使用sigma(n-sa[i]+1-height[i])的做法不会wa
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int maxn = 5e4+;
char line[maxn];
int s[maxn];
int sa[maxn],t1[maxn],t2[maxn],c[maxn];
int rank[maxn],height[maxn]; void build_sa(int s[],int n,int m)
{
int i,j,p,*x=t1,*y=t2;
//第一轮基数排序,如果s的最大值很大,可改为快速排序
for(i=;i<m;i++)c[i]=;
for(i=;i<n;i++)c[x[i]=s[i]]++;
for(i=;i<m;i++)c[i]+=c[i-];
for(i=n-;i>=;i--)sa[--c[x[i]]]=i;
for(j=;j<=n;j<<=)
{
p=;
//直接利用sa数组排序第二关键字
for(i=n-j;i<n;i++)y[p++]=i;//后面的j个数第二关键字为空的最小
for(i=;i<n;i++)if(sa[i]>=j)y[p++]=sa[i]-j;
//这样数组y保存的就是按照第二关键字排序的结果
//基数排序第一关键字
for(i=;i<m;i++)c[i]=;
for(i=;i<n;i++)c[x[y[i]]]++;
for(i=;i<m;i++)c[i]+=c[i-];
for(i=n-;i>=;i--)sa[--c[x[y[i]]]]=y[i];
//根据sa和x数组计算新的x数组
swap(x,y);
p=;x[sa[]]=;
for(i=;i<n;i++)
x[sa[i]]=y[sa[i-]]==y[sa[i]] && y[sa[i-]+j]==y[sa[i]+j]?p-:p++;
if(p>=n)break;
m=p;//下次基数排序的最大值
}
}
void getHeight(int s[],int n)
{
int i,j,k=;
for(i=;i<=n;i++)rank[sa[i]]=i;
for(i=;i<n;i++)
{
if(k)k--;
j=sa[rank[i]-];
while(s[i+k]==s[j+k])k++;
height[rank[i]]=k;
}
} int T; int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%s",line);
int N = strlen(line);
for(int i=;i<=N;i++)
s[i] = line[i]; build_sa(s,N+,);
getHeight(s,N); long long len = N;
long long ans = len*(len+)/; for(int i=;i<=N;i++)
{
ans -= height[i];
}
printf("%d\n",ans);
}
}
SPOJ705-New Distinct Substrings-后缀数组的更多相关文章
- [spoj694&spoj705]New Distinct Substrings(后缀数组)
题意:求字符串中不同子串的个数. 解题关键:每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数. 1.总数减去height数组的和即可. 注意这里height中为什么不需 ...
- SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数
题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...
- SPOJ - DISUBSTR Distinct Substrings (后缀数组)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- 【SPOJ – SUBST1】New Distinct Substrings 后缀数组
New Distinct Substrings 题意 给出T个字符串,问每个字符串有多少个不同的子串. 思路 字符串所有子串,可以看做由所有后缀的前缀组成. 按照后缀排序,遍历后缀,每次新增的前缀就是 ...
- SPOJ DISUBSTR Distinct Substrings 后缀数组
题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...
- SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )
题意 : 对于给出的串,输出其不同长度的子串的种类数 分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀 ...
- spoj Distinct Substrings 后缀数组
给定一个字符串,求不相同的子串的个数. 假如给字符串“ABA";排列的子串可能: A B A AB BA ABA 共3*(3+1)/2=6种; 后缀数组表示时: A ABA BA 对于A和 ...
- spoj 694. Distinct Substrings 后缀数组求不同子串的个数
题目链接:http://www.spoj.com/problems/DISUBSTR/ 思路: 每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数.如果所有的后缀按照su ...
- SPOJ_705_New Distinct Substrings_后缀数组
SPOJ_705_New Distinct Substrings_后缀数组 题意: 给定一个字符串,求该字符串含有的本质不同的子串数量. 后缀数组的一个小应用. 考虑每个后缀的贡献,如果不要求本质不同 ...
- Cogs 1709. [SPOJ705]不同的子串 后缀数组
题目:http://cojs.tk/cogs/problem/problem.php?pid=1709 1709. [SPOJ705]不同的子串 ★★ 输入文件:subst1.in 输出文件: ...
随机推荐
- 单点登录SSO:可一键运行的完整代码
单点登录方案不同于一个普通站点,它的部署比较繁琐:涉及到好几个站点,要改host.安装证书.配置HTTPS. 看到的不少这方面示例都是基于HTTP的,不认同这种简化: 1. 它体现不出混合HTTP/H ...
- JAVA里自定义注解来进行数据验证
API开发中经常会遇到一些对请求数据进行验证的情况,这时候如果使用注解就有两个好处,一是验证逻辑和业务逻辑分离,代码清晰,二是验证逻辑可以轻松复用,只需要在要验证的地方加上注解就可以. Java提供了 ...
- ASP.Net Core 中使用Zookeeper搭建分布式环境中的配置中心系列一:使用Zookeeper.Net组件演示基本的操作
前言:马上要过年了,祝大家新年快乐!在过年回家前分享一篇关于Zookeeper的文章,我们都知道现在微服务盛行,大数据.分布式系统中经常会使用到Zookeeper,它是微服务.分布式系统中必不可少的分 ...
- 在Linux的Windows子系统上(WSL)使用Docker(Ubuntu)
背景 平时开发大部人都是在提供了高效GUI的window下工作,但是真正部署环境普遍都是在Linux中,所以为了让开发环境和部署环境统一,我们需要在windows模拟LInux环境,以前我们可能通过虚 ...
- Git简易的命令入门
Git 全局设置: git config --global user.name "kszsa" git config --global user.email "duyon ...
- Gym 101873F Plug It In(二分图匹配)
题目链接:http://codeforces.com/gym/101873/problem/F 题意:有n个插孔,m个机器,和一个插板,一个插孔可以连接一个机器,插板可以使一个插孔连接三个机器,找到最 ...
- Linux安装Apache常见报错(二)
配置Apache提示报错configure error: APR could not be located. Please use the --with-apr option. 解决办法: ./con ...
- 用C# BigInteger实现的BigDecimal类,终于可以直接做四则运算了。
https://code.google.com/p/dotnet-big-decimal/ 这是个BigDecimal类的开源项目,支持Operators +, - and *. 俺给改了改,加上了除 ...
- PS 制作彩色烟雾
- P66 整环的零元
R/I=0的零因子是0+I吗? 如果不是,那请问R/I的零因子是什么呢? R/I没有零因子 R/I的零元 是I中的元素定义的等价类 么 a是理想I的元素,自然也是R的元素